(18.210.12.229) 您好!臺灣時間:2021/03/01 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊子儀
研究生(外文):Tzu-Yi Chuang
論文名稱:三維環形渦漩噴流場之大渦數值模擬
論文名稱(外文):Large-Eddy Simulation of Three Dimensional Annular Swirling Jet Flow
指導教授:廖清標
指導教授(外文):C-B Liao
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木及水利工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:96
中文關鍵詞:環形渦漩噴流投影法大渦紊流模式渦漩數
外文關鍵詞:swirling numberprojection methodannular swirling jetlarge-eddy simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本文主要利用數值計算方法探討環形渦漩噴流於一圓柱擋體後之流場結構。以有限差分法求解三維時變的Navier-Stokes方程式。速度場是採用顯式Adams-Bashforth法及隱式Crank-Nicloson法的混合計算方法,使流場解答不論在時間或空間的離散上,都能獲得二階精確度;壓力場是利用投影法導出壓力的Poisson方程式,配合快速傅利葉轉換(FFT)及三對角矩陣系統直接解出;高雷諾數紊流場,是配合使用大渦紊流模式加以模擬計算。
數值計算結果龐大資料,則採用TecPlot 3D繪圖軟體加以處理,將數值計算所得到的大量資料,以圖形方式呈現,以利流況之判讀及流場特性之探討。
文中固定環形噴流之阻隔比(Di2/Do2)及突張比(De/Do),故影響流場的主要參數為雷諾數及渦漩數,針對雷諾數100~10000,渦漩數為0~0.5之流況,進行流場之計算工作及流動特性之探討。與台大應力所沈弘俊教授多年來以切光流場顯影之實驗結果比較,初步研究結果顯示流場型態與實驗大致相符,證實本研究所發展的三維數值模式相當成功。
Abstract

A finite-difference method for the numerical simulation of the incompressible, time-dependent and three-dimensional Navier-Stokes equations in a confined annular swirling jet flow is presented. The variables of velocity are solved together with explicit Adams-Bashforth scheme and implicit Crank-Nicolson scheme, then a projection method is used to derive the pressure Poisson equation which solved by fast Fourier transform and a tridiagonal matrix system, so a second order accurate solution can be achieved in both space and time discretization. For the turbulence flow field, a Large-eddy simulation is used.
By means of the TecPlot 3D software displaying the numerical data as visual, it’s convenient for us to thrash out the flow-field.
Fixed the blockage ratio(Di2/Do2) and expansion ratio(De/Do), the Reynolds number and swirling number are the primary parameters of the flow, we discussed the Reynolds number from 100 to 10000 and swirling number from 0 to 0.5. By comparing with the Sheen et al. experiment, the results are good agreement and three dimensional numerical model was established successful indeed.
Contents
AcknowledgementⅠ
Chinese abstract ………………………………...…………...Ⅱ
English abstract Ⅲ
Contents ..……...IV
Table Lists ..……...VII
Figure Lists ..……...VIII





Chapter1 Introduction1
1-1. Introduction ...…………………………………………………………………1
1-2. Literature review2
1-2-1. Experimental analysis2
1-2-2. Theoretical analysis5
1-2-3. Numerical analysis6
1-3. Motive in this research9
1-4. Investigative method10
1-5. Contents in this work11
Chapter2 Theoretical background 12
2-1. Governing equations12
2-2. Initial and boundary conditions16
2-3. Turbulence modeling17
2-3-1. Basic assumptions of modelind17
2-3-2. Large-eddy simulation18
2-4. Controlled parameters21
Chapter3 Numerical Algorithm22
3-1. Disposition of grid system and variables of the field22
3-2. Numerical discretization and calculation23
3-3. Treatment of the pressure equation27
3-4. Computational procedures31
Chapter4 Numerical results and discussion32
4-1. Analysis of grid independence32
4-2. Relationship between the length of recirculation buble and Reynolds number 34
4-3. Regimes of laminar flow36
4-3-1. Axisymmetric and asymmetric flow patterns36
4-3-2. Illustration the flow-field on azimuthal and axial section37
4-4. Regimes of turbulence flow41
4-4-1. Analysis the Smagorinsky constant 41
4-4-2. Verification of the Large-eddy simulation 43
4-4-3. Illustration of turbulence flow-field44
4-5. Flow patterns in recirculation zone48
Chapter5 Conclusions and suggestions50
5-1. Conclusions ……50
5-2. Suggestions……52
References ……..53
1. Batchelor, G.. K. & Gill, A. E. (1962), “Analysis of the stability of axisymmetric jets,” J. Fluid Mech.Vol.14, pp. 529-557.2. Beer, J. M. & Chigier, N. A. (1972), Combustion Aerodynamics, John Wiley and Sons Inc., New York.3. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (1960), Transport Phenomena, John Wiley, New York.4. Chan, W. T. & Ko, N. W. M. (1978), ”Coherent structures in the outer mixing region of annular jets,” J. Fluid Mech.Vol.89, pp. 515-5335. Dennis, S. C. R. & Walker, J. D. A. (1972), ”Numerical solution for time-dependent flow past an impulsively started sphere,” Phys. Fluids 15, pp.517-525.6. Durst, F. & Wennerberg, D. (1991), “Numerical aspects of caculation of confined swirling flows with internal recirculation,” International Journal for Numerical Methods in Fluids, Vol. 12, pp. 203-224.7. Escudier, M. P. & Keller, J. J. (1985), ”Recirculation in swirling flow: a manifestation of vortex breakdown,” AIAA J., Vol.23, No.1, pp. 111-116.8. Feyedelem, M. S. & Sarpkaya, T. (1998), ”Free- and Near-Free Surface Swirling Turbulent Jets,” AIAA J., Vol.36, No.3, pp. 359-364.9. Gould, R. D., Stevenson, W. H. & Thompson, H. D. (1990), ”Investigation of turbulent transport in an axisymmetric sudden expansion,” AIAA J., Vol.28, No.2, pp. 276-283.10. Jiang, T. L. & Shen, C.H. (1994), “Numerical predictions of the bifurcation of confined swirling flows,” International Journal for numerical methods in fluids, Vol.19, pp. 1-18.11. Khorrami, M. R. (1995), ”Stability of a compressible axisymmetrical swirling jet,” AIAA J., Vol.33, No. 4, pp. 650-658.12. Ko, N. W. M. & Chan, W. T. (1979), ”The inner regions of annular jets,” J. Fluid Mech., Vol.93, pp. 549-584.13. Ko, N. W. M. & Lam, K. M. (1985), ”Flow structures of a basic annular jet,” AIAA J., Vol. 24, No. 9, pp. 1185-1190.14. Kim, I. & Pearlstein, A. J. (1990), “Stability of the flow past a sphere,” J. Fluid Mech., Vol.211, pp. 73-93.15. Lam, K. M. & Ko, N. W. M. (1986), ”Investigation of flow structures of a basic annular jet,” AIAA J., Vol.24, No.9, pp. 1488-1493.16. Leonard, A. (1974), “Energy Cascade in Large-eddy Simulations of Turbulent Fluid Flows,” Advs. Geophysics, Vol.18, pp.237-249.17. Lester L. Y., Robert L. S. & Joel H. F. (1999), “Large-eddy simulation of a round jet in crossflow,” J. Fluid Mech., Vol.379, pp. 71-104.18. Lewis, M.H. & Smoot, L.D. (1981), ”Turbulent Gaseous Combustion Part I: Local Species Concentration Measurements,“ Combust. Flame, Vol.42, pp.83-191.19. Li, X., & Tankin, R. S., “A Study of Cold and Combusting Flow Around Bluff-Body Combustors,” Combust. Science and Tech., Vol.52, pp.173-206.20. Lilley, D. G., (1977), ”Swirl flows in combustion: a review, ” AIAA J., Vol.15, No. 8, pp. 1063-1078.21. Michele, C. (1996),“Large-Eddy Simulations of Turbulent flow with Heat Transfer in Simple and Complex Geometries Using Harwell-flow3D,” APPl. Math. Modeling, Vo1.20, pp. 262.271.22. Panda, J. & Mclaughlin, D. K. (1994), ”Experiments on the instabilities of a swirling jet, ” Phys. Fluids 6, No.1, pp. 263-276.23. Ragab, S. & Sreedhar, M. (1995), ”Numerical-simulation of vortices with axial velocity deficits,” Phys. Fluids 7, No.3, pp. 549-558.24. Rimon, Y. & Cheng, S. I. (1969), ”Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers,” Phys. Fluids 12, pp. 949-959.25. Sheen, H. J., Chen, W. J. & Jeng, S. Y. (1996), ”Recirculation zones of unconfined and confined annular swirling jets,” AIAA J., Vol.34, pp. 572-579.26. Sheen, H. J., Chen, W. J. & Wu, J. S. (1997), ”Flow patterns for an annular flow over an axisymmetric sudden expansion,” J. Fluid Mech., 350, pp. 177-188.27. Sheen, S. C. (1999), “Large Eddy Simulation: A Survey,” The Sixth National Computational Fluid Dynamics Conference, Taiwan Taitung, pp.84-88.28. Smagorinsky, J. (1963), ”General circulation experiments with the primitive equations: Part I. The basic experiment,” Monthly Weather Review, Vol.91, pp.99-164.29. Song, C.C.S. & Yuan, M. (1988),“Simulation of vortex-shedding flow about a circular cylinder at high Reynolds numbers,” J. of Fluids Eng., Vol.112, pp. 155-161.30. Spall, R. E. & Gatski, T. B. (1995),”Numerical calculations of three-dimensional turbulent vortex breakdown,” International Journal for Numerical Method in Fluids.,Vol.20, pp. 307-318.31. Sreedhar, M. K. & Ragab, S. A. (1994), ”Large-eddy simulation of a stationary longitudinal vortex,” Phys. Fluids 6, No.7, pp. 2501-2514.32. Verzicco, R. & Orlandi, P. (1996), ”A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates,” Journal of Computational Physics, Vol. 123, pp. 402-414.33. Yang, Y. T. (1995), ”Numerical computation of an impinging jet with uniform wall suction,” International Journal for Numerical Methods in Fluids, Vol. 20, pp. 641-648.34. Young, D. L., Liao, C. B. & Hu, W. H. (1997), ”Computations of the axisymmetric annular swirling jet flow,” Numerical Methods in Laminar and Turbulent Flow, Vol. 10, Pineridge Press, Swansea, UK., pp. 405-416.35. Young, D. L., Liao, C. B. & Sheen, H. J. (1999), “Computations of recirculation zones of a confined annular swirling flow,“ International Journal for Numerical Methods in Fluids., Vol. 29, pp. 791-810.36. Zhu, J. (1995), “The second-order projection method for the backward-facing step flow,” Journal of Computational Physics, Vol.117, pp. 318-331. 37. 林字衛 (1998)”含環形渦漩流之剪流場與渦流核心研究”,國立台灣大學應用力學研究所碩士論文。38. 林禎鴻 (1998) ”環形渦漩噴流場結構之數值模擬”,逢甲大學土木及水利工程研究所碩士論文。39. 吳敬熙 (1995)”含環形噴流突張管之流場結構與不穩定現象”,國立台灣大學應用力學研究所碩士論文。40. 陳維鈞 (1995)”含環形渦漩流之流場研究”,國立台灣大學應用力學研究所博士論文。41. 廖清標,沈弘俊,吳銘順,盧泰成(1999) ”,環形噴流越過突張管三維流場型態之數值模擬”,第十六屆機械工程研討會論文集,新竹,p197-204。42. 廖清標,盧泰成,吳銘順,施慶忠 (2000)”,三維環形渦漩噴流場之數值模擬”,電子計算機於土木水利工程應用研討會論文集,台中,p1540-1548。43. 劉天松 (1994)”紊流模式對燃燒室內流場計算的影響”,國立台灣大學機械工程學研究所碩士論文。44. 鄭相垚 (1994)”含環形渦漩噴流之流場結構”,國立台灣大學應用力學研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔