(3.237.97.64) 您好!臺灣時間:2021/03/05 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡杰裕
研究生(外文):Jay-Yu Tsai
論文名稱:鈀膜反應器進行乙醇脫氫反應之研究
論文名稱(外文):A Study of Ethanol Dehydrogenation Reaction in a Palladium Membrane Reactor
指導教授:張新福張新福引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:117
中文關鍵詞:鈀膜脫氫乙醇
外文關鍵詞:EthanolPalladiumDehydrogenation
相關次數:
  • 被引用被引用:9
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
氫氣在未來的能源發展裡,佔著一席重要的地位,因此許多學者皆著重在利用不同的脫氫反應進行產氫的研究。而在本論文中,將討論利用鈀膜反應器進行乙醇脫氫的研究,藉由鈀膜吸氫的功能,反應產生的氫氣可直接從反應相經由鈀膜滲透,造成反應相中氫氣分壓降低,不僅可以增加轉化率,更可以從反應器的滲透端直接得到高純度的氫氣(3-7N)。實驗之鈀膜管是以無電鍍技術所製成的,將之操作在溫度範圍為350℃-450℃、壓力範圍為1-10atm的反應環境中進行鈀膜透氫行為與乙醇脫氫反應的研究,使用之觸媒主要為MDC-3銅鋅觸媒,利用改變實驗的操作參數來研究鈀膜反應器內進行乙醇脫氫反應最佳之操作條件,進而與其他反應器模式比較。經由實驗結果發現當450℃、10atm、進料流速為9cc/h、WHSV=5的時候有最大的氫氣滲透量(0.0281mole/h),且鈀膜氫氣回收率為76.9﹪。而在相同進料流速(9cc/h)與觸媒量(1.4688g)下,350℃、10atm時緻密型鈀膜的乙醛產率(20.19﹪)為多孔型鈀膜乙醛產率(11.25﹪)的1.8倍,更是傳統反應器乙醛產率(6.95﹪)的2.9倍,而且乙醇轉化率(34.43﹪)會高於乙醇的平衡轉化率(21.91﹪)。然而實驗後所得的結果與實驗前預期並模擬出乙醇轉化率可以達到趨近於100﹪的結果相差甚遠,因此在綜合實驗過程中的經驗後而討論出幾項導致結果低於預期的因素:1.進行反應時並沒有將sweep gas考慮入反應器中。2.MDC-3銅鋅觸媒對乙醇的脫氫反應的活性與選擇性並不是很高。3.由於乙醇脫氫與乙醇脫水的競爭反應,且反應器中之反應物並沒有和觸媒床做充分的接觸,而產物中之氫氣也沒有和鈀膜表面做充分的接觸。因此造成乙醛產率偏低、乙醛選擇率皆偏低。
Abstract
The dehydrogenation of saturated hydrocarbons to alkenes used as an intermediate in the production of new fuels and fuel additives, and hydrogen has become more and more popular in the past several decades. In this paper, we investigated the ethanol dehydrogenation to produce acetaldehyde and hydrogen in a palladium membrane reactor. With the separation of hydrogen by permeation through a palladium membrane, the thermodynamic equilibrium was allowed to displace to a new condition. It cannot only shift the equilibrium to increase the conversion, but also obtain the high purity of hydrogen from the permeation side. The reactor used a porous stainless steel tube that was electrolessly plated palladium with a thickness c.a. 15μm, was industrial catalyst loaded MDC-3 for the dehydrogenation test. With the change between the operation parameters, we can find the optimum operation condition in a palladium membrane reactor, and compare with conventional reactor. According to the experimental data, the maximum production of pure hydrogen obtained was 0.0281mole/h and the maximum palladium membrane recovery yield of hydrogen form ethanol was found to be 76.9﹪. For the dehydrogenation of ethanol to acetaldehyde in a dense membrane reactor, the largest enhancement in ethanol conversion was a factor of 1.49 greater than a porous membrane reactor, 1.57 greater than equilibrium conversion and 1.95 greater than a conventional reactor. But it still had a large difference between the experiment and the simulation data. The experimental result was much lower than simulation that was attributed: 1.the effect of sweep is ignored. 2.The low activity and low acetaldehyde selectivity catalyst. 3. Existence of by passing and challenge effect that caused inadequate contact between the reactant, catalyst bed and the membrane surface.
目錄
中文摘要.................................I
Abstract..................................III
目錄................................... .V
圖目錄..................................VIII
表目錄..................................XI
壹、前言..................................1
貳、原理..................................4
2.1無機薄膜反應器介紹.....................4
2.1.1薄膜(membrane)介紹..................4
2.1.2無機穿透膜的種類.....................5
2.1.2.1多孔型薄膜........................5
2.1.2.2緻密型薄膜........................7
2.1.3無機薄膜反應器種類與應用...............7
2.2鈀過渡元素的基本特性...................10
2.2.1歷史背景...........................10
2.2.2鈀金屬的氫脆現象.....................11
2.2.3鈀合金穿透膜........................11
2.2.4氫原子的傳送機構.....................12
2.3鈀及其合金穿透膜製備方法................15
2.4乙醇脫氫反應..........................19
2.4.1鈀膜反應器進行脫氫反應之研究...........19
2.4.2乙醇脫氫反應之反應機構................20
參、實驗方法與步驟........................22
3.1藥品.................................34
3.2儀器裝置.............................36
3.3鈀膜的透氫行為........................39
3.4以鈀膜反應器進行乙醇脫氫反應研究.........41
3.4.1乙醇脫氫反應反應物及產物定性、定量分析...42
3.4.2利用傳統反應器進行乙醇脫氫反應..........43
3.4.3利用多孔型鈀膜反應器進行乙醇脫氫反應..... 44
3.4.4利用緻密型鈀膜反應器進行乙醇脫氫反應.....45
3.4.4.1空白實驗(blank test)................45
3.4.4.2薄膜實驗........................45
肆、結果與討論............................54
4.1鈀膜透氫行為..........................54
4.1.1多孔型鈀膜測試......................54
4.1.2緻密型鈀膜測試......................55
4.2傳統反應器進行乙醇脫氫反應..............56
4.3利用鈀膜反應器進行乙醇脫氫反應...........57
4.3.1空白實驗...........................57
4.3.2多孔型鈀膜..........................58
4.3.3緻密型鈀膜..........................59
4.3反應器模式對乙醇脫氫的影響..............61
伍、結論.................................102
陸、附錄.................................105
柒、參考文獻.............................110
柒、參考文獻1.林有銘,“薄膜反應器在石化製成上的應用化工技術”,第7卷第11期,218-228頁 (1999)2.Lin, Y. M., Lee, G. L. and Rei, M. H., “Studies on the Preparation of Hydrogen with a Palladium Membrane-Catalytic Reactor,” Catal. Today, 44, 343 (1998).3.Lin, Y. M., Lee, G. L. and Rei, M. H., “Process Development for Generating High Purity Hydrogen by Using Supported Palladium Membrane Reactor as steam Reforming,” Int. J. Hydrogen Energ., 25 211 (2000).4.Lin, Y. M., Lee, G. L. and Rei, M. H., “Study on Steam Reforming of Methane and Methanol in Supported Palladium Membrane Reactor,” 台灣區第十八屆觸媒研討會5.Deng, J. F., Cao, Z. and Zhou, B., “Catalytic Dehydrogenation of Ethanol in a Meatl-Modified Alumina Membrane Reactor,” Appl. Catal. A, 132, 9 (1995).6.Cao, Y., Liu, B. S. and Deng, J. F., “Catalytic Dehydrogenation of Ethanol in Pd-M/γ-Al2O3 Composite Membrane Reactor,” Appl. Catal. A, 154, 129 (1997).7.Raich, B. A. and Foley,, H. C., “Ethanol Dehydrogenation with a Palladium Membrane Reactor : An Alternative to Wacker Chemistry,” Ind. Eng. Chem. Res., 37, 3888 (1998).8.Hsieh, H. P., Inorganic Membranes For Separation and Reaction, Membrane Science and Technology seriers, (1996)9.Shu, J., Grandjean, B. P. A. Van Neste, A and Kaliaguine, S., “Catalytic Palladium-Based Membrane Reactor: A Review,” Can. J. Chem. Eng., 69, 1036 (1991).10.Tosotsis, T. T.,Champagnie, A. M., Vasileiadis, S. P., Ziaka, Z. D. and Minet, R. G., “The Enhancement of Reactor Yield Through The Use of High Temperature Membrane Reactors,” Separ. Sci. Technol, 28, 397 (1993).11.Mardilovich, P. P., She, Y. and Ma, Y. H.,“Defect-Free Palladium Membrane on Porous Stainless Steel Support,” AIChE J., 44, 3101 (1998).12.Saracoo, G. and Specchia, V., “Catalytic Inorganic-Membrane Reactor: Present Experience and Future Opportunities,” Catal. Rev. Sci Eng., 36, 305 (1994).13.Yeung, K. L., Arvind, R., Zawada, R. J. X., Szegner, J., Cao, G. and Varma, A., “Nonuniform Catalyst Distribution for Inorganic Membrane Reactors: Theoretical Consideration and Preparation Techniques,” Chem. Eng. Sci., 49, 4823 (1995)14.Yeung, K. L. and Varma, A., “Novel Preparation Techniques for Thin Metal-Ceramic Composite Membrane,” AIChE J., 41, 2131 (1995)15.Yeung, K. L., Sebastian, J. M. and Varma, A., “Novel Preparation of Pd/Vycor Composite Membrane,” Catal. Today,” 25, 231 (1995)16.Yeung, K. L., Arvind, R., Szegner, J. and Varma, A., “Metal Composite Membrane: Synthesis, Charaterization and Reaction Studies,” Stud. Surf. Sci. Catal., 101, 1349 (1996)17.Yeung, K. L., Christiansen, S. C. and Varma, A., “Palladium Composite Membrane by Electroless Plating Technique Relationships between Plating Kinetics, Film Microstructure and Membrane Performance,” J. Membrane Sci., 159,107 (1999)18.Li, A., Xiong, G. X., Gu, J. H. and Zheng, L. B., “Preparation of Pd/Ceramic Composite Membrane: Improvement of the Convectional Preparation Technique,” J. Membrane Sci., 110, 257 (1996)19.Zhao, H. B., Pfanz, K., GU, J. H., Li, A. W., Stroh, N., Brunner, H. and Xiong, G. X., “Preparation of Palladium Composite Membrane by Modified Electroless Plating Procedure,” J. Membrane Sci., 142, 147 (1998)20.Zhao, H. B., Xiong, G. X. and Baron, G. V., “Preparation and Characterization of Palladium-Based Composite Membranes by Electroless Plating and Magnetron Sputtering,” Catal. Today, 56, 89 (2000)21.趙宏賓、李武安、谷景華、盛世善、熊國興,“溶膠-凝膠製備技術與新型催化材料IV用新的化學鍍飾過程製備鈀金屬復合膜”催化學報,第十八卷第六期,第450-453頁 (1997)22.Chou, K. S. and Wang, S. M., “Studies on the Preparation of Pd/Alumina/Porous Stainless Steel Membranes for Hydrogen Separation,” J. Chin. Inst. Chem. Engrs., 31, 499 (2000)23.Grashoof, G. J., Pilkington, C. E. and Corti, C. W., “The Purification of Hydrogen,” Platinum Metals Review, 27, 157 (1983)24.Philpott, J. E., “Hydrogen Diffusion Technology,” Platinum Metals Review, 29, 12 (1985)25.Ilias, S. and Govind, R., “Development of High Temperature Membranes for Membrane Reactor: An Overview,” AIChE Symposium Series, 85, 18 (1989)26.Li, A., Liang, W. and Hughes, R., “Characterization and Permeation of Palladium / Stainless Steel Composite Membranes,” J Membrane Sci, 149, 259 (1998)27.Hsieh, H. P., Inorganic Membranes For Separation and Reaction, Elsevier Science (1996)28.Saracco, G. and Specchia, V., “Catalytic Inorganic-Membrane Reactors: Present Experience and Future Opportunities,” Catal. Rev. Sci. Eng., 36, 305 (1994)29.Itoh, N., “Properties of a Composite Charged Reverse Osmosis Membrane,” Int. Congr. Membr. Processes, Tokyo Japan, 352 (1987)30.Lewis, F. A. The Palladium Hydrogen System, Academic Press, London (1967)31.Itoh, N., “A Membrane Reactor Using Palladium,” AIChE J., 33, 1576 (1987)32.Shu, J., B. Grandjean, P. A., A. Neste, V. and Skallaguine, “Catalytic Palladium-Based Membrane Reactor — A Review,” Can. J. Chem. Eng., 69, 1036 (1991) 33.Gobina, E. and Atnoor, D., “Ethane dehydrogenation Using a High Temperature Catalytic Membrane Reactor,” J. Membrane Sci., 90, 11 (1994)34.Buxbam, R. E. and Marker, T. L., “Hydrogen Transport through Non-porous Membranes of Palladium-coated Niobium, Tantalum and Vanadium,” J. Membrane Sci., 85, 29 (1993)35.Yan, S. C., Meada, H., Kusakabe, K. and Morooka, S., “Thin Palladium films Formed in Support Pore by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation,” Ind. Eng. Chem. Res., 33, 616 (1994)36.Uemiya, S., T. Matsuda, and Kikuchi, E., “Hydrogen Permeable Palladium-silver Alloy Membrane Supported Porous Ceramics,” J Membrane Sci, 56, 315 (1991a)37.Sue, J., Grandjean, B. P. A., Ghali, E. and Kaliaguine, S., “Simultaneous Deposition on Pd and Ag on Porous Stainless stell by Electroless Plating,” J. Membrane. Sci., 77, 181 (1993)38.Uemiya S., “State-of-the-Art of Supported Metal Membranes for Gas Separation,” Separation and purification Methods, 28, 51 (1999)39.林有銘,周窈朱,莊鉦賢,劉淑鈴,黃家銘,林修正“新型氫氣生產製程開發暨應用”工業技術研究院能源與資源研究所(1998)40.Barrer, R. M., Diffusion in and trough Solids, Cambridge University Press, London (1951)41.Itoh, N., Shindo, Y. and Haray, K., “Ideal Flow Models For Palladium Membrane Reactors,” J. Chem. Eng. Jan., 23, 420 (1990)42.Xomeritakis, G. and Lin, Y. S., “Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition,” J. Membrane. Sci., 120, 261 (1996)43.Kikuchi, E., “Steam Reforming of Methane in Membrane Reactor: Comparison of Electroless-Plating and CVD Membrane and Catalyst Packing Modes,” Catal. Today, 56, 75 (2000)44.Feurer, E. and Suhr, H., “Thin Palladium Films Prepared by Metal-organic Plasma-Enhanced Chemical Vapor Deposition,” Thin Solid Films, 157, 81 (1988)45.Gozum, J. E., Pollina, D. M., Jensen, J. A. and Girolami, G. S., “Tailored Organometallics as Precursors for the Chemical Vapor Deposition of High Purity Palladium and Platinum Film,” J. Am. Chem. Soc., 110, 2688 (1988)46.Lin, W. B., Warren, T. H., Nuzzo, R. G. and Girolami, G. S., “Surface Selective Deposition of Palladium and Silver Films from Metal-Organic Precursors: A Novel Metal-organic Chemical Vapor Deposition Redox Transmetallation Process,” J. Am. Chem. Soc., 115, 11644 (1993)47.Yan, S. C., H. Maeda, Kusakabe, K. and Morooka, S., “Thin Palladium Membrane Formed in Support Pores by Metal Organic Chemical Vapor Deposition Method and application to Hydrogen Separation,” Ind. Eng. Chem. Res., 33, 616 (1994)48.Uemiya, S., Kajiwara, M. and Kojima, T., “Composite Membranes of Group-VIII Metal Supported on Porous Alumna,” AIChE J., 43, 2715 (1997)49.Deoca, J. A. M., Vargas, J. R. and Godinez, J., “Preparation of Platinum and Palladium Films by MOCVD and Their Electrchemical Properties,” Surf. Eng., 16, 66 (2000)50.Jayaraman, V., Lin, Y. S., Pakala, M. and Lin, R. Y., “Fabrication of Ultrathin Metallic Membranes on Ceramic Support by Sputtering Deposition,” J. Membrane Sci., 99, 89 (1995)51.McCool, B., Xomeritakis, G. and Lin, Y. S., “Composition Contril and Hydrogen Permeation Characteristics of Sputter Deposited Palladium-Silver Membranes,” J. Membrane Sci., 161, 67 (1999)52.Collins, J. P. and Way, J. D., “Preparation and Characterization of Composite Palladium — Ceramic Membrane,” Ind. Eng. Chem. Res., 32, 3006 (1993)53.Govind, R. and Atnoor, D., “Development of a composite Palladium Membrane for Selective Hydrogen Separation at Hugh Temperature,” Ind. Eng. Chem. Res., 30, 591 (1991)54.Yeung, K. L., Sebastian, J. M. and Varma, A., “Novel Preparation of Pd / Vycor Composite Membranes,” Catal. Today, 25, 231 (1995)55.Li, A., Xing, G., J. Gu, and Zheng, L., “Preparation of Pd / Ceramic Membrane — Improvement of the conventional Preparation Technique,” J. Membrane Sci., 110, 257 (1996)56.Mardilovich, P. P., She, Y., Ma, Y. H. and Rei, M. H., “Detect-Free Palladium Membranes on Porous Stainless Steel Support,” AIChE J., 44, 310 (1998)57.Li, A., Liang, W. and Hughes, R., “Fabrication of Defect-free Pd / α-Al2O3 Composite Membranes for Hydrogen Separation,” Thin Solid Films, 350, 106 (1999)58.Li, A., W. Liang, and Hughes, R., “Repair of a Pd / α-Al2O3 Composite Membrane Contain Defects,” Separ. Purif. Method, 15, 113 (1999)59.Yeung, K. L., Christiansen, S. C. and Varma, A., “Palladium Compossite Membranes by Electroless Plating Technique — Relationships between Plating Kinetics, Film Microstructure and Membranes Performance,” J. Membrane Sci., 159, 107 (1999)60.Wu, L. Q., Xu, N. P. and Shi, J., “Preparation of a Palladium Composite Membrane by an Improved Electroless Plating Technology,” Ind. Eng. Chem. Res., 39, 342 (2000)61.Itoh, N., “A Membrane Using Palladium” AIChE J., 33, 1576 (1987)62.Peloso, A., Moresi, M., Mustachi, C. and Soracco, B., “Kinetics of the Dehydrogenation of Ethanol to Acetaldehyde on Unsupported Catalysts,” Can. J. Chem. Eng., 57, 159 (1979)63.Franckaerts, J. and Forment, G. F. “Kinetic Study of the Dehydrogenation of ethanol,” Chem. Eng. Sci., 19, 807 (1964)64.Buxbaum, R. E. and Marker, T. L., “Hydrogen Transport through Non-Porous Membranes of Palladium-Coated Niobium, Tantalum and Vanadium,” J. Member. Sci., 85, 29 (1993)65.Edlund, D. J. and Pledger, W. A., “Thermolysis of Hydrogen Sulfide in a Metal-Membrane Reactor,” J. Member. Sci., 77, 255 (1993)66.Edlund, D. J. and McCarthy, J., “The Relationship between Intermetallic Diffusion and Flux Decline in Composite-Membranes: Implications for Achieving Long Membrane Lifetime,” J. Member. Sci., 107, 147 (1995)67.Gryaznov, V. M., Serebryannikova, O. S. and Serov, Y. M., “Preparation and Catalysis over Palladium Composite Membranes,” Appl. Catal. A, 96, 15 (1993)68.Liu, B. S., Dai, W. L., Wu, G. H. and Deng, J. F., “Amorphous Alloy / Ceramic Composite Membrane: Preparation, Characterization and Reaction Studies,” Catal. Lett., 49, 181 (1997)69.Liu, B. S., Wu, G. H., Niu, G. X., and Deng, J. F., “Rh-Modified Aluminum Membranes: Preparation, Characterization and Reaction Studies,” Appl. Catal. A-Gen, 185, 1 (1999)70.Xue, D., Chen, H., Wu, G. H. and Deng, J. F., “Amorphous Ni-B Alloy Membrane: Preparation and Application in Ethanol Dehydrogenation,” Appl. Catal. A-Gen, 85, 1 (1999)71.Cao, Y., Liu, B. S. and Deng, J. F., “Catalytic Dehydrogenation of Ethanol in Pd-M / γAl2O3 Composite Membrane Reactors,” Appl. Catal. A-Gen, 154, 129 (1997)72.Deng, J. F., Cao, Z. and Zhou, B., “Catalytic Dehydrogenation of Ethanol in a Metal-Modified Aluminum Membrane Reactor,” Appl. Catal. A-Gen, 132, 9 (1995) 73.Liu, B. S., Cao, Y., and Deng, J. F., “Catalytic Dehydrogenation of Ethanol in Ru-Modified Aluminum Membrane Reactor,” Separ. Sci. Technol, 32, 1683 (1997)74.Raich, B. A., Implications of Kinetics for Selectivity and Conversion Enhancement in Palladium Membrane Reactor, University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering (1995)75.Kuler, J. N., Lorenzen, L., “Composite and Modeling the Dehydrogenation of Ethanol in a Plug-Flow Reactor and a Pd-Ag Membrane Reactor,” Ind. Eng. Chem. Res., 41, 1960 (2002)76.Isamu, N., Yamamoto, O., Tamura, R., Nishikubo, M. and, Takezawa, N., “Difference in the Reaction of Acetaldehyde Intermediates in the Dehydrogenation of Ethanol over Supported Pd Catalysts,” Catal. Lett., 62, 179 (1999)77.Lin, Y. M., Lee, G. L. and Rei, M. H., “An Integrated Purification and Palladium Membrane-Catalytic Reactor,” Catal. Today, 44, 343 (1998)78.Lin, Y. M., Chang, C. H., “Application of Supported Palladium Membrane in Hydrogen Separation Process and Catalytic Steam Reforming Reaction,” 第二屆海峽兩岸催化學術會議,第239頁79.Itoh, N., “Limiting Conversion of Dehydrogenation in Palladium Membrane Reactor,” Catal. Today, 44, 343 (1998)80.Shiau, C. Y. and Chen, T. W., “Kinetic of Catalytic Dehydrogenation of Ethanol over Copper-Chromia Catalyst,” J. Chin. I. Ch. E., 22, 3 (1991)81.Yaw, C. Y. and Chiang, P. Y., “Equations for Gibbs Free energy Will Help Identified Favorable Reaction,” Hydrocarb. Process., 81 (1988)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔