跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祺能
研究生(外文):Chi-Num Lin
論文名稱:固定化細胞產氫
論文名稱(外文):Hydrogen Production with Immobilized Cells
指導教授:吳石乙
指導教授(外文):Shu-Yii Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:生物流體化床生物產氫固定化細胞
外文關鍵詞:Fluidized BedHydrogen FermentationClostridium
相關次數:
  • 被引用被引用:42
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在厭氧的情況下,利用固定化活性污泥進行生物產氫程序。固定化細胞是由包埋法所獲得,其中藉由添加活性炭(AC)、聚氨基甲酸乙酯(PU)和acrylic latex plus silicone (ALSC)可以增加其化學和物理特性。這些不同固定化細胞的產氫表現,是用來評估最佳化的固定化細胞顆粒以應用在實際的廢水處理上。
以蔗糖為限制碳源,固定化細胞系統的產氫效率比懸浮菌液系統好,但兩著的可溶性代謝物都以乙酸(HAc)和丁酸(HBu)為主。添加AC的藻酸鈣(CA)固定化細胞,比起未添加的CA固定化細胞在產氫速率v H2和基質轉化率YH2/sucrose分別增加了70%和52%。更進一步的添加PU和ALSC,可以增加固定化細胞的機械強度和操作的穩定度,但是卻會降低產氫速率。
動力學的研究上顯示固定化細胞的產氫速率對不同營養基質濃度作圖,可以用Michaelis-Menten模式描述,可以得到不錯的結果。利用Michaelis-Menten模式估算三種不同材質固定化細胞的產氫速率大小,依序為CA/AC固定化細胞 ﹥ALSC固定化細胞 ﹥PU固定化細胞。同時CA/AC固定化細胞也有最高的解離常數(Km),然後是PU和ALSC固定化細胞。從動力學的分析可預測CA/AC固定化細胞可能擁有高濃度『活性』生物觸媒,而PU和ALSC固定化細胞和營養基質則有較佳的親合力。經由重複批次產氫操作活化固定化細胞,對於產氫速率的提升有令人意想不到的結果。對於CA/AC固定化細胞提高了25倍、PU和ALSC固定化細胞提高了大約10和15倍。然而ALSC固定化細胞在重複批次操作中可穩定產氫超過24次,其穩定度大於CA/AC和PU固定化細胞。
從批次固定化細胞產氫的實驗中,ALSC固定化細胞展現了較佳的穩定度和產氫能力,因此選擇ALSC固定化細胞進行連續式流體化床(fluidized bed)生物產氫反應。結果發現在水力動力性質方面,氣-液-固三相流體化床,會因為操作流速Uo、生物產氫量Ug的改變造成反應器流型的改變,遂以壓力擾動之頻譜分析研究氣-液-固三相流化床之水力動力性質。當Ug=0.52ml/s固定時,操作流速Uo=0.85cm/s為非均一流化床向均一流化床的過渡,Uo小於0.85 cm/s時為非均一流化床,大於0.85 cm/s時為均一流化床。
在生物產氫方面,當固定床膨脹為30%、反應溫度35℃、操作流速Uo= 1.38 cm/s下,流化床中營養基質之水力停留時間 (HRTe)由6h逐漸降低至2h時,產氫速率會隨之提昇,但當HRTe再降至1h,則產氫速率急遽降低;但將該流化床反應器以70℃熱篩處理30分鐘過,且HRTe增加為2h時,則產氫狀況迅速恢復,且可得到最佳產氫速率(ν H2) 為 2.92 L/h-g VSS,蔗糖基質轉化率 (Y H2/Sucrose)為 2.67 mol H2/mol Sucrose 。在可溶性代謝物的組成上仍是以丁酸為主,所得之結果與批次實驗相似。可見由杯瓶實驗放大至流體化床連續產氫操作上是可行的。
ABSTRACT
Municipal sewage sludge was immobilized to produce hydrogen gas under anaerobic conditions. Cell immobilization was essentially achieved by gel entrapment approaches, which were physically or chemically modified by addition of activated carbon (AC), polyurethane (PU) and acrylic latex plus silicone (ALSC). The performance of hydrogen fermentation with a variety of immobilized-cell systems was assessed to identify the optimal type of immobilized cells for practical uses.
Using sucrose as the limiting carbon source, hydrogen production was more efficient with the immobilized-cell system than with the suspended-cell system, while in both cases, the predominant soluble metabolites were butyric acid and acetic acid. Addition of activated carbon into alginate gel (denoted as CA/AC cells) enhanced the hydrogen production rate ( ) and substrate-based yield ( ) by 70% and 52%, respectively, over the conventional alginate-immobilized cells. Further supplementation of polyurethane or acrylic latex/silicone increased the mechanical strength and operation stability of the immobilized cells, but caused a decrease in the hydrogen production rate.
Kinetic studies show that the dependence of specific hydrogen production rates on the concentration of limiting substrate (sucrose) can be described by Michaelis-Menten model with good agreement. The maximum hydrogen production rate ( ) estimated from the model decreased in the order of CA/AC cells > ALSC cells > PU cells. Meanwhile, CA/AC also had the highest value of dissociation constant (Km), followed by PU and ALSC cells. The kinetic analysis suggests that CA/AC cells may contain higher concentration of active biocatalysts for hydrogen production, while PU and ALSC cells had better affinity to the substrate. Acclimation of the immobilized cells by repeated hydrogen fermentation with sucrose led to a remarkable enhancement in with a twenty-five fold increase for CA/AC and ca. 10-15 fold increases for PU and ALSC cells. However, the ALSC cells were found to have better durability than PU and CA/AC cells as they allowed stable hydrogen production for over 24 repeated runs.
Acclimation of the immobilized cells by repeated hydrogen fermentation with sucrose show that the ALSC cells had better mechanical strength and operation stability. Using the ALSC cells as the bed material, the experiments were carried out in a three-phase fluidized bed reactor with hydrogen fermentation. Two important properties show in the experiment results: one is hydrodynamic, and the other is hydrogen fermentation.
In hydrodynamic: Under a steady state of biogas production rate there are three flow regimes that varied with different operating liquid velocities such as plug-flow, slugging and free bubbling. The technique of pressure fluctuation analysis was used to analyze the hydrodynamic properties in this three-phase fluidized bed. The biogas production rate was Ug = 0.52 ml/s, and the liquid velocity was Uo = 0.85 cm/s, this being the transition state. Under Uo = 0.85 cm/s there is a heterogeneous fluidized bed, while above this liquid velocity, the bed is homogeneous.
In hydrogen fermentation: The bed expansion was 30%, the reaction temperature was 35℃, and the liquid velocity was Uo = 1.38 cm/s. While the hydraulic retention time (HRTe) of sucrose was decreased from 6h to 2h, the hydrogen production rate was increased. When HRTe was further decreased to 1h, but the hydrogen production rate was decreased sharply. In this situation, the temperature of the fluidized bed was increased to 70℃ for thermal treatment. After 30 minutes, and the HRTe was back to 2h, the hydrogen production rate was regained rapidly. The ALSC cells had the best specific production rate (υH2 ) and substrate-based hydrogen yield (YH2/sucrose) of 2.92 L/h-g VSS and 2.67 mol H2/ mol sucrose, respectively. The composition of soluble metabolites of Butyric acid (HBu) was produced significantly during fluidized bed hydrogen fermentation. The result is similar to the batch hydrogen fermentation. As the result, it seems to be available to scale up from batch system to continuous fluidized bed.
目錄
中文摘要………………………………………………………………..Ⅰ
Abstract..………………………………………………………………..Ⅲ
目錄……………………………………………………………………..Ⅴ
圖目錄…………………………………………………………………..Ⅸ
表目錄………………………………………………………………..ⅩⅢ
符號說明…………………………………………………….……….ⅩⅣ

第一章緒論……………………………………………………………1
1-1前言………………………………………………………………1
1-2研究目的…………………………………………………………4

第二章文獻回顧與原理………………………………………………5
2-1生物產氫…………………………………………………………5
2-1-1 光合作用(Biophotolysis)………………...………………..5
2-1-2 光醱酵產氫(Photofermentation)………………………….7
2-1-3 暗醱酵產氫(Darkfermentation)…………………………...7
2-1-4 厭氧醱酵產氫的電子產生路徑和產氫機制…………….7
2-1-4-1 厭氧醱酵產氫的電子產生路徑……………………7
2-1-4-2 厭氧醱酵的產氫機制………………………………9
2-1-4 光醱酵和暗醱酵的混合產氫系統………………………12
2-2產氫微生物……………………………………………………12
2-3Clostridium特性……..…………………………………………13
2-4固定化細胞……………………………………………………..15
2-4-1 固定化細胞的定義………………………………………15
2-4-2 固定化細胞的方法與分類………………………………15
2-4-2-1 物理法………………………………………………15
2-4-2-2 化學法………………………………………………16
2-4-3 固定化細胞擔體比較……………………………………17
2-4-3-1 天然固定化擔體……………………………………17
2-4-3-2 合成擔體……………………………………………19
2-5固定化細菌醱酵產氫…………………………………………..22
2-6生物產氫動力學………………………………………………..23
2-6-1 Michaelis-Menten動力學……………………………….23
2-7三相流體化床…………………………………………………..25
2-7-1 醱酵過程的基本特點……………………………………26
2-7-2 固定化細胞顆粒的穩定度和強度……………………28
2-7-3 流化床中之壓力擾動分析………………………………28
2-7-3-1 形成壓力擾動之因..………………………………..28
2-7-3-2 不同操作條件對壓力擾動之影響………..………..31

第三章實驗方法……………………………………………………..34
3-1藥品……………………………………………………………..34
3-2實驗儀器………………………………………………………..34
3-3固定化細胞之製備……………………………………………..37
3-3-1藻酸鈣(CA)固定化細胞…………………………………..37
3-3-2修飾藻酸鈣(CA)固定化細胞…………………………….37
3-4實驗流程……………………………………………………… .38
3-4-1杯瓶生物產氫實驗……………………………………….38
3-4-1-1實驗裝置圖………………………………………….38
3-4-1-2營養基質成分………………………………………..38
3-4-1-3操作條件…………………………………………….40
3-4-1-4實驗流程…………………………………………….40
3-4-1-4-1懸浮菌液批次產氫…………………………….40
3-4-1-4-2不同材質固定化細胞批次產氫……………….40
3-4-1-4-3不同基質濃度對不同材質固定化細胞批
次產氫…………………….……………………43
3-4-1-4-4不同材質固定化細胞連續批次產氫………….43
3-4-2流化床生物產氫實驗…………………………………….43
3-4-2-1實驗裝置圖…………………………………………43
3-4-2-2營養基質成分………………………………………43
3-4-2-3操作條件……………………………………………43
3-4-2-4實驗流程……………………………………………43
3-4-2-4-1ALSC固定化細胞密度ρp之測定……………44
3-4-2-4-2ALSC固定化細胞最小流體化速度 Umf
之測定………….……………………...……….44
3-4-2-4-3流化床生物產氫………………………………44
3-4-3流化床水力動力性質實驗………………………………..44
3-4-3-1實驗裝置圖…………………………………………44
3-4-3-2營養基質成分………………………………………44
3-4-3-3操作條件……………………………………………45
3-4-3-4實驗流程……………………………………………45

第四章結果與討論…………………………………………………..46
4-1懸浮菌液產氫…………………………………………………..46
4-2CA、CA/CaCO3、CA/AC共固定化細胞產氫……………….46
4-3其他固定化細胞產氫………………………………………….50
4-3-1PU固定化細胞產氫………………………………………50
4-3-2比較CA/AC、PU、ALSC固定化細胞產氫……………53
4-4活化固定化細胞產氫…………………………………………..53
4-5基質濃度對固定化細胞產氫之影響…………………………..57
4-6固定化細胞連續批次操作對產氫之影響……………………..62
4-7以蔗糖作為限制物質的產氫動力學…………………………..64
4-8流化床中ALSC固定化細胞基本性質………………………..65
4-9HRTe對流化床產氫效率之影響………………………………66
4-10熱篩處理對流化床產氫效率之影響…………………………..67
4-11流化床生物產氫過程之液相代謝物…………………………..67
4-12以壓力擾動分析Uo對反應器中流相改變之影響……………73

第五章結論與建議………………………………………………….82
5-1結論……………………………………………………………..82
5-2建議…………………………………………………………….84
參考文獻………………………………………………………………..86
參考文獻[1]Suzuki Y. “On hydrogen as fuel gas.” Int. J. Hydrogen Energy 1982; 7 : 227-30.[2]Bockris JO’M. “The economics of hydrogen as a fuel.” Int. J. Hydrogen Energy 1981; 6: 223-41.[3]Veziroglu TN. “Twenty years of the hydrogen movement.” 1974-1994. Int. J. Hydrogen Energy 1995; 20: 1-7.[4]Ramachandran R, Menon RK. “An overview of industrial uses of hydrogen.” Int. J. Hydrogen Energy 1998; 23: 593-8.[5]Czuppon TA, Knez SA, Newsome DS. “Othmer encyclopedia of chemical technology.” New York: Wiley 1996. p. 884.[6]Rosen MA, Scott DS. “Comparative efficiency assessments for a range of hydrogen production processes.” Int. J. Hydrogen Energy 1998; 23 : 653-9.[7]Lodhi MAK. “Hydrogen production from renewable sources of energy.” Int. J. Hydrogen 1987; 12: 461-8.[8]Sastri MVC. “India’s hydrogen energy program ─ a status report.” Int. J. Hydrogen Energy 1989; 14: 507-13.[9]Cox KE, Williamson Jr KD. “Hydrogen: its technology and implications.” Boca Raton, FL: CRC Press, 1979.[10]Casper MS. “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques.” Park Ridge, NJ: Nayes Data Corp, 1978.[11]Benemann JR. “Feasibility analysis of photobiological hydrogen production.” Int. J. Hydrogen Energy 1997; 22: 979-87.[12]Greenbaum E. “Hydrogen production by photosynthetic water splitting.” In: Vezioroglu TN, Takashashi PK, editors. Hydrogen energy progress ⅤⅢ. Proceedings 8th WHEC, Hawaii. New York: Pergamon Press, 1990. p. 743-54.[13]Sasikala K, Ramana ChV, Rao PR, Kovace KL. “Anoxygenic phototrophic bacteria: physiology and advances in hydrogen technology.” Adv. Apple Microbiol. 1993; 10: 211-5.[14]Miyamoto K, Wable O, Benemann JR. “Vertical tubular photobioreactor: design and operation.” Biotechnol. Lett. 1989; 10: 703-10.[15]Tanisho S, Wakao N, Kokako Y. “Biological hydrogen production by Enterobacter aerogenes.” J. Chem. Eng. Jpn. 1983; 16: 529-30.[16]Gaffron H, Rubin J. “Fermentative and photochemical production of hydrogen by algae.” J. Gen. Physiol. 1992; 26: 219-40.[17]Benemann JR, Miyamoto K, Hallenbeck PC. “Bioengineering aspects of biophotolysis.” Enzyme Microbial. Technol. 1980; 2: 103-11.[18]Lee JW, Greenbaum E. “A new perspective on hydrogen production of photosynthetic water splitting.” In: Saha BC, Woodward J, editors. Fuels and chemical for biomass, ACS Symposium Series, Washington: ACS. Vol. 666, 1997, 209-22.[19]Kumazawa S, Mitsui A. “Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria Sp. Miami BG7: Enhancement through limiting the supply of nitrogen nutrient.” Int. J. Hydrogen Energy 1981; 6: 339-48.[20]Healey FP. “Hydrogen evolution by several algae.” Planta 1970; 91: 220.[21]Benemann JR, Berenson JA, Kaplan NO, Kauren MD. “Hydrogen evolution by a chloroplast-fereedoxin-hydrogenase system.” Proc. Natl. Acad. Sci. USA 1973; 70: 2317-20.[22]Subramanian G, Kaushik BD, Venkatraman GS. “Cyanobacterial biotechnology.” USA: Science Pub. Inc, 1998.[23]Smith GD, Ewart GD, Tucker W. “Hydrogen production by cyanobacteria.” Int. J. Hydrogen Energy 1992; 17: 695-8.[24]Sarker S, Pandey KD, Kashyap AK. “Hydrogen photoproduction by filamentous non-heterocystous cyanobacterium Pleatonema boryanna and simultaneous release of ammonia.” Int. J. Hydrogen Energy 1992; 17: 689-94.[25]Calvin M, Taylor SE. “Fuels from algae.” In: Cresswell RC, Rees TAV, Shah N, editors. Algal and cyanobacterial biotechnology. London: Longman Scientific and Technical, 1989, p. 137-160.[26]Kumar D, Kumar HD. “Effect of monochromatic lights on nitrogen fixation and hydrogen evolution in the isolated hetrocysts of Anabaena sp. strain CA.” Int. J. Hydrogen Energy 1991; 16: 397-401.[27]Stewar WDP. “Some aspects of structure and function in N2-fixing cyanobacteria.” Annu. Rev. Microbiol. 1980; 34: 497-536.[28]Lambert GR, Smith GD. “The hydrogen metabolism of cyanobacteria (blue-green algae).” Biol. Rev. 1981; 56: 589-660.[29]Uffen RL. “Anaerobic growth of a Rhodo pseudomonas species in the dark wuth carbon monoxide as sole source of carbon and energy substrate.” Proc. Natl. Acad. Sci. USA 1976; 73: 3298-302.[30]Tanisho S, Suzuki Y, Wakoo N. “Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005.” Int. J. Hydrogen Energy 1987; 12: 623-7.[31]Brosseau JD, Zajic JE. “Continuous microbial production of hydrogen gas.” Int. J. Hydrogen Energy 1982; 7: 623-8.[32]Tanisho S. “Biological hydrogen production by fermentation.” Proceedings of the Second International Conference on New Energy Systems & Conv., Istanbul, 1995. p. 311-6.[33]Kumar N, Das D. “Enhancement of hydrogen production by Enterobacter cloacae ⅡT-BT 08.” Process Biochem. 1999; 35: 589-94.[34]Kumar N, Das D. “Production and purification of alpha-amylase from hydrogen producing Enterobacter cloacae ⅡT-BT 08.” Bioprocess Eng. 2000; 23: 205-8.[35]張嘉修、李國興、林屏杰、吳石乙、林秋裕,”以環境生物技術生產清潔能源---氫氣”,化工(impress),2002。[36]Jones, D. T., and D. R. Woods. “Acetone-butanol fermentation revisited.” Microbiol. Rev. 1986; 50: 484-524.[37]白明德,”厭氧生物產氫機制與程序操作策略之研究”,國立成功大學環境工程研究所碩士論文,1999。[38]Tanisho S, Kuromoto M, Kadokura N. “Effect of CO2 removal on hydrogen production by fermentation.” Int. J. Hydrogen Energy 1998; 23: 559-63.[39]Debabrata Das, T. Nejat Veziroglu. “Hydrogen production by biological process: a survey of literature.” Int. J. Hydrogen Energy 2001; 26: 13-28.[40]Weare NM, Benemann JR. “Nitrogenase activity and photosynthesis by Plectonema boryanum 594.” J. Bacteriol. 1874; 119: 158-68.[41]Prazmowski, A. “Untersuchung uber die Entwicklungsgeschichte und Fermentwirkung einiger Bakterien-Aeten. Inaug.” Diss. Hugo Voigt, Leipzig 1880; 1-58.[42]Gottschalk G.. “Bacteria Metabolism.” Spring-Verlag New York. 1986; 208-282.[43]李國鏞、游若萩,”微生物學”,華香園出版社,第四版,台北市, 1992,第126-145頁。[44]林明正,”CSTR厭氧產氫反應槽之啟動及操作”,逢甲大學碩士論文, 2000。[45]吳美惠,張芳賓,朱昱學,”固定化微生物廢水處理技術評估”,工業污染防治,第59期,1996,第81-110頁。[46]Fujita M., Ike, Mi and Hashimoto, S. “Feasibility of Wastewater Tratment Using Genetically Engineered Microorganisms.” Water Res. 1991; 25: 979-984.[47]陳國誠,”微生物酵素工程學”,藝軒出版社,1992。[48]Chen K. C. and Lin Y. F. “Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel.” Enzyme Microb. Technol. 1994; 16: 79-83.[49]Hashimoto S. and Furukawa K. “Immobilization on activated sludge by PVA-broic acid mrthod.” Biotech. Bioeng. 1987; 30: 52-59.[50]Vorlop K.-D., Muscat A. and Beyersdorff J. “Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity.” Biotech. Techn. 1992; 6: 483-488.[51]Sumino T., Nakamura H., Mori N., Kawaguchi Y. and Tada M. “Immobilization of nitrifying Bacteria in Porous Pellets of Urethane Gel for Removal of Ammonium Nitrogen from Wastewater.” Appl. Microbiol. Biotechnol. 1992; 36: 556-560.[52]Willke B., Willker T. and Vorlop K.-D. “Poly(Carbamoylsulphonate) as a matrix for whole cell immobilization-biological characterization.” Biotech. Techn. 1994; 8: 623-626.[53]Tanaka K., Tada M., Kimata T., Harada S., Fujii Y., Mizuguchi T., Mori N. and Emori H. “Development of new nitrogen removal systems using nitrifying bacteria immobilized in synthetic resin pellets.” Wat. Sci. Tech. 1991; 23: 681-690.[54]Takeshima M., Kimata T., Mori N. and Emori H. “Pegasus, an innovative high-rate BOD and nitrogen removal process for municipal wastewater.” 66th WEF Annual Conference, 1993.[55]Kumar N, Das D. “Production of pollution free gaseous fuel.” 2000, Patent application #473/2000/Cal. India.[56]Kumar N, Monga PS, Biswas AK, Das D. “Modeling and simulation of cleaner fuel production.” Int. J. Hyd. Energy 2000; 25: 945-52.[57]Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y. “Hydrogen production by immobilized cells of Enterobacter aerogenes strain HO39.” J. Ferment. Bioeng. 1997; 83: 481-4.[58]Seon YH, Lee CG, Park DH, Hwang KY, Joe YI. “Hydrogen production by Immobilized cells in nozzle loop bioreactor.” Biotechnol. Letts. 1983; 15: 1275-80.[59]Kumar N, Das D. “Continuous hydrogen production by immobilized Enterobacter cloacae ⅡT-BT 08 using lignocellulosic materials as solid matrices.” Enzyme and Micro. Technol. 2001; 29: 280-287.[60]吳石乙、林祺能、李國興、張嘉修,”以固定化細胞進行氫氣醱酵之研究”,第六屆生化工程研討會論文集,2001,第529-532頁。[61]Kobayashi T., Ohmiya K. and Shimizu S. “Approximate expression of effectiveness factor for immobilized enzymes with Michaelis-Menten kinetics.” J. Ferment. Technol. 1976; 54: 260-63.[62]Venkatasubramanian, K., and S.B. Karkare. “Immobilized Cells and Organelles.” B. Mattiasson, CRC Press, FL 1983; 2: 133.[63]Morse, R. D. and C. O. Ballou. “The Uniformity of Fluidization — Its Measurement and Use.” Chem. Eng. Progr. 1951; 47 (4): 199~204.[64]Swinehart, F. M. “A Statistical Study of Local Wall Presure Fluctuations in Gas Fluidized Column.” Ph. D Dissertation, University of Michigan. 1966.[65]Tamarin, A. I. “The Origin of Self-Excited Oscillations in Fluidized Beds.” Int. Chem. Eng. 1964; 4(1): 50~54.[66]Lirag, R., C. Jr. and H. Littman. “Statistical Study of the Pressure Fluctuations in a Fluidized Bed.” AIChE Symp. Ser. 1971; 67(116): 11~22.[67]Baskakov, A. P., P., V. G. Tuponogov and N. F. Fillippovsky. “A Study of Pressure Fluctuation in a Bubble Fluidized Bed.” Powder Technol. 1986; 45: 113~117.[68]Hiby, J. W. “Periodic Phenomena Connected with Gas-Solids Fluidization.” Proc. Int. Symp. On Fluidization. 1967; 99~111.[69]Morse, R. D. and C. O. Ballou. “The Uniformity of Fluidization — Its Measurement and Use.” Chem. Eng. Pro. 1951; 47 (4): 199~204.[70]Shuster, W. W. and P. Kisliak. “The Measurement of Fluidization Quality.” Chem. Eng. Pro. 1952; 48 (9): 455~458.[71]Swinehart, F. M. “A Statistical Study of Local Wall Presure Fluctuations in Gas Fluidized Column.” Ph. D Dissertation, University of Michigan. 1966.[72]Lirag, R., C. Jr. and H. Littman. “Statistical Study of the Pressure Fluctuations in a Fluidized Bed.” AIChE Symp. Ser. 1971; 67 (116): 11~22.[73]Fan, L. T., T. C. Ho. and W. P. Walawender. “Pressure Fluctuations in a Fluidized Bed.” AIChE J. 1981; 27(3): 388~396.[74]Lee, G. S. and S. D. Kim. “Pressure Fluctuation in Turbulent Fluidized Bed.” J. Chem. Eng. Japan 1988; 21(5): 515~521.[75]Chen, S. P., Z. Q. Yu, Y. Jin and P. Cai. “Investigation on the Vertical Division of Flow Regions in a Gas-Solid Fluidized Bed by Means of Coherence Function.” Powder Technol. 1993; 75: 127~131.[76]Kang, W. K., J. P. Sutherland and G. L. Osberg.” Pressure Fluctuations in a Fluidized Bed with and without Screen Cylindrical Packings.” I & EC Fundam. 1967; 6 (4): 499~504.[77]Verloop, J. and P. M. Heertjes. “Tperiodic Pressure Fluctuations in Fluidized Beds.” Chem. Eng. Sci. 1974; 29: 1035~1042.[78]Fan, L. T., S. Hiraoka and S. H. Shin. “Analysis of Pressure Fluctuations in a Gas-Solid Fluidized Bed.” AIChE J. 1984; 29(1): 33~39.[79]Hiraoka, S., S. H. Shin, L. T. Fan and K. C. Kim. “Pressure Fluctuation in a Gas-Solid Fluidized Bed — Effect of External Noise and Bubble Residence Time Distribution.” Powder Technol. 1986; 38~: 125~143.[80]Winter, O. “Density and Pressure Fluctuations in Gas Fluidized Beds.” AIChE J. 1968; 14 (3): 426~434.[81]Sadasivan, N., D. Barreteau and C. Laguerie. “Study on Frequency and Magnitude of Fluctuations of Pressure Drop in a Gas-Solid Fluidized Bed.” Powder Technol. 1980; 26: 67~74.[82]Satija, S. and L. S. Fan. “Characteristics of Slugging Regime and Transition to Turbulent Regime for Fluidized Beds of Large Corarse Particles.” AIChE J. 1985; 31 (9): 1554~1562.[83]Fan, L. T., D. Neogi, M. Yashima and R. Nassar. “Stochastic Analysis of a Three-Phase Fluidized Bed : Fractal Approach.” AIChE J. 1990; 36(10): 1529~1535.[84]Clark, N. N., E. A. McKenzie Jr. and M. Gautam. “Differential Pressure Measurements in a Slugging Fluidized Bed.” Powder Technol. 1991; 67: 187~199.[85]Yerushalmi, J. and N. T. Cankurt. “Further Studies of the Regimes of Fluidization.” Powder Technol. 1979; 24: 187~205.[86]Broadhurst, T. E. and H. A. Becker. “Measurement and Spectral Analysis of Pressure Fluctuations in Slugging beds.” Fluidization Technology, 1(D). L. Keairns, Ed., Hemisphere Publ. Corp., Wasington. 1976; 63~85.[87]Svoboda, K. J., Cermak, M. Hartman, J. Drahos and K. Selucky. “Pressure Fluctuations in Gas-Fluidized Beds at Elevatd Temperatures.” Ind. Eng. Chem. Proc. Des. Dev. 1983; 22: 514~520.[88]Puncochar, M., J. Drahos, J. Cermak and K. Selucky. “Evaluation of Minmum Fluidizing Velocity in Gas Fluidized Bed from Pressure Fluctuations.” Chem. Eng. Commum. 1985; 35: 81~87.[89]Caram, H. S. and K. K. Hsu. “Bubble Formation and Gas Leakage in Fluidized Beds.” Chem. Eng. Sci. 1986; 41(6): 1445~1453.[90]Drahos, J., J. Cermak and K. Schugerl. “Characterization of Axial Nonumiformity in Fluidized Bed by the Amplitude of Local Pressure Drop Fluctuations.” Chem. Eng. Commun. 1988; 65: 49~60.[91]Kage, H., H. Yamaguchi, H. Ishii and Y. Matsuno. “Bubble Behavior in Bubbling Fluidized Beds of Binary Particles.” J. Chem. Eng. Japan 1991; 24(4): 525~531.[92]Nelson, B. H., C. L. Briens and M. A. Bergougnou. “Pressure Fluctuations at Individual Grid Holes of a Gas-Solid Fluidized Bed.” Powder Technol. 1993; 77: 95~102.[93]Cen, K., Y. Chungen and Z. Luo. “Hydrodynamics Research of Circulating Fluidized Bed by Chaotic Time Series Analysis of Pressure Fluctuation.” Proc. 5th Intern, Conf. On CFB 1996; 5: 1~6.[94]Ermakova, A., G.K. Ziganshin, and M.G. Slinko, Theor. Found. Chem. Eng. 1970; 4: 84.[95]Chen C. C, Lin C. Y, Chang J. S. “Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate.” Appl. Microbiol. Biotechnol. 2001; 57: 56-64.[96]Cha G. C, Noike T. “Effect of rapid temperature change and HRT on anaerobic acidogenesis.” Wat. Sci. Tech. 1997; 36: 247-253.[97]Dinopoulou G, Rudd T, Lesterb J. N. “Anaerobic acidogenesis of a complex wastewater: Ⅰ. The influence of operational parameters on reactor performance.” Biotechnol. Bioeng. 1988; 31: 958-968.[98]Yan R. T, Zhu C. X, Golemboski C, Chen J. S. “Expression of solvent-forming enzymes and onset of solvent production in bath culture of Clostridium butyricum.” Appl. Environ. Microbiol. 1988; 54: 642-648.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊