跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃力彬
研究生(外文):Li-Pin Huang
論文名稱:利用NCD進行PID控制器最適化設計
論文名稱(外文):Optimal Design of PID Controllers by Using the NCD Technique
指導教授:陳奇中陳奇中引用關係
指導教授(外文):Chyi Tsong Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:增益規劃PID控制器設計最適化設計
外文關鍵詞:optimal designPID controller designgain scheduling
相關次數:
  • 被引用被引用:4
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於PID控制器結構簡單又容易使用,再加上其內部參數具備明確的物理意義,因此廣受工業界的青睞。然而目前眾多設計控制器的方法當中,最受矚目的方法之一乃為IMC-PID控制器設計法。因為此法只需配合適當的濾波器或濾波常數,便可確保整個控制系統的穩定性,而其控制效果也有不錯的表現。然而從Fallahi和Jahanmiri (1997) 的文獻中發現,他們所提出的IMC-PID控制器的濾波器並非最佳化,因此吾人首先利用MATLAB軟體中NCD(Nonlinear Control Design) Blockset的技術來進行文獻中濾波器參數的選取,希望藉由最佳化濾波器參數的修正來改善系統之控制效能。經由模擬中發現,此種作法雖然能夠增進控制器之性能,然而由於IMC-PID控制器自身形式之限制,效果並不顯著。因此,接下來吾人更進一步地利用NCD的技術來直接搜尋傳統PID控制器之最佳參數,此種作法不但免去找尋參數的複雜流程,並且簡單又有效。此外,對於較難控制的非線性系統,吾人先將非線性系統在其操作點附近線性化後,利用NCD的技術來搜尋出最佳的PI或PID控制器參數,並且基於增益規劃(Gain Scheduling)的觀念來進行控制系統的設計。最後,為了避免控制器參數隨著不同的操作點而改變時,所造成控制力劇烈變化的影響,因而吾人也引進anti-reset windup的方法,以符合實際應用於現場之需要。經由模擬結果顯示,本文所提的控制策略不僅簡單易行、對於設定點改變有很好的控制表現,而且關於干擾消除的能力也不遑多讓。
Due to its simple structure, significantly physical meaning of the parameters, and easy to implement and maintain, the PID-type controllers have been widely used in process industry. Among them, the IMC-PID controller is one of the most popular schemes by which the system’s performance and stability of the resulting control system can be easily ensured by the design of an appropriate filter. However, some reports have revealed that the IMC-PID controller designed based on an identified process model is not always optimal. This is because that there still have no general rules for the setting of the filter parameter. In this thesis, we first discuss the design of IMC-PID controller on the base of an identified second-order-plus-dead-time model. Then a nonlinear control design (NCD) tool, proposed by MATHWORKS in MATLAB Simulink environment, is adopted to find the optimal filter parameter of an IMC-PID controller. The implementation of the NCD tool is quite simple; only some performance indexes, such as rise-time, overshoot and setting time, are needed for the optimal search procedure. With successful experiences, we further extend the NCD technique to the direct design of an optimal PID controller as well as those controllers for use in nonlinear processes. In this research direction, the designs of gain scheduling and anti-reset windup PID controller have been considered and have been implemented in multi-tank mixer and a nonlinear CSTR reactor. Extensive simulation results reveal that the NCD technique is very powerful yet simple for the optimal design of a PID control system.
目 錄
中文摘要.......................................................i
英文摘要......................................................ii
目錄.........................................................iii
圖目錄........................................................vi
表目錄........................................................ix
第一章 緒論....................................................1
1-1 前言..............................................1
1-2 研究動機..........................................4
1-3 組織章節..........................................5
第二章 基於二階模式之系統識別..................................6
2-1 前言..............................................6
2-2 離線二階模式的建立................................8
2-3 自調諧二階模式的建立.............................13
2-4 模擬測試.........................................17
2-5 結果與討論.......................................22

第三章 基於二階模式之IMC-PID控制器設計........................23
3-1 前言.............................................23
3-2 IMC控制器設計....................................23
3-3 模擬測試.........................................27
3-4 結果與討論.......................................35
第四章 IMC-PID控制器最適化設計................................36
4-1 前言.............................................36
4-2 NCD Blockset之原理...............................37
4-3 NCD Blockset之操作簡介...........................38
4-4 NCD Blockset之範例...............................44
4-5 模擬測試.........................................48
4-6 結果與討論.......................................57
第五章 基於NCD Blockset之PID控制器直接最適化設計..............58
5-1 前言.............................................58
5-2 線性系統之PID控制器直接最適化設計................60
5-3 非線性系統之PID控制器設計........................70
5-3-1 增益規劃.......................................70
5-3-1-1 模擬範例:三槽之攪拌程序.....................72

5-3-2 設定點追蹤多模式PID控制器設計..................80
5-3-2-1 模擬範例:一階放熱反應非等溫連續攪拌反應槽...80
5-3-3 防止重整飽和之PID控制器設計....................90
5-3-3-1 模擬範例:一階放熱反應非等溫連續攪拌反應槽...91
5-4 結果與討論.......................................98
第六章 結論與未來展望.........................................99
附 錄.....................................................101
參考文獻.....................................................103
參考文獻Astrom, K. J. and T. Hagglund,“Automatic Tuning of Simple Regulators with Specications on Phase and Amplitude Margins,” Automatica, 20, 645-651 (1984).Cohen, G. H. and G. A. Coon,“Theoretical Investigations of Retarded Control,” Trans ASME, 75, 827-834 (1953).Fallahi, H. R. and A. Jahanmiri,“New Methods for Process Identification and Design of Feedback Controller,” Trans IChemE, 75, 519-522 (1997).Garcia, C. E. and M. Morari,“Internal Model Control-1:A Unifying Review and Some New Results,” Ind. Eng. Chem. Proc. Des. Dev., 21, 308-323 (1982).Wang, G. B. and H. Y. Lee,“Multiple Linear Model Predictive Control of Nonlinear Unstable Processes,” PSE Asia, 41-47 (2000). Luyben, W. L.,“Derivation of Transfer Functions for Highly Nonlinear Distillation Columns,” Ind. Eng. Chem. Res., 26, 2490-2495 (1987).Marlin, T. E.,“Process Control: Designing Processes and Control Systems for Dynamic Performance,” McGraw-Hill, New York (2000).Math Works, NCD Blockset, User’s Guide, 1997.Park, J. H., S. W. Sung and I. Lee,“Improved Relay Auto-Tuning with Static Load Disturbance,” Automatica, 33, 711-715 (1997).Rivera, D. E., M. Morari and S. Skogestad,“Internal Model Control, 4. PID Controller Design,” Ind. Eng. Chem. Process Des. Dev., 25, 252-265 (1986).Rovira, A. A., P. W. Murrill and C. L. Smith,“Tuning Controllers for Set-Point Changes,” Inst. Cont. Syst., 42(12), 67-76 (1969).Shen, S. H., J. S. Wu and C. C. Yu,“Use of Biased-Relay Feedback for System Identification,” AIChE J., 42, 1174-1180 (1996a).Shen, S. H., J. S. Wu and C. C. Yu,“Automatic Tuning Under Load Disturbance,” Ind. Eng. Chem. Res., 35, 1642-1651 (1996b).Sung, S. W. and I. Lee,“Limitations and Countermeasure of PID Controllers,” Ind. Eng. Chem. Res., 35, 2596-2610 (1996).Sung, S. W., J. O, J. Lee, S. Yi and I. Lee,“Automatic Tuning of PID Controller Using Second-Order Plus Time Delay Model” J. Chem. Eng. Jpn., 29, 990-999 (1996).Wang, F. S.,“Adaptive Root-Locus Control for SISO Processes with Time Delays,” Optimal Control Applications and Methods, 11, 211-221 (1990).Ziegler, J. G. and N. B. Nichols,“Optimum Settings for Automatic Controllers,” Trans. ASME, 64, 759-768 (1942).周春暉,“時滯系統PID控制器內模整定方法的擴展,” 控制與決策, 13(4), 337-341 (1998).周鵬程編著,線性與非線性控制設計-活用Matlab, 全華出版社, (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top