跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹弘雍
研究生(外文):Horn-Yong Jan
論文名稱:線性直流無刷馬達之多目標PID控制
論文名稱(外文):Multiple PID Control for Linear Brushless DC Motor
指導教授:林俊良林俊良引用關係
指導教授(外文):Chun-Liang Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:85
中文關鍵詞:PID控制器基因演算法多目標最佳化線性馬達進化演算法
外文關鍵詞:Genetic AlgorithmsPID controlLinear motorEvolution algorithmMulti-objective optimization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:528
  • 評分評分:
  • 下載下載:153
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文針對含有模式不確定性之直流無刷線性馬達設計強健追蹤控制器。控制器之性能指標包含頻域及時域,此設計可同時兼顧強健穩定性、最佳控制能量以及暫態響應。對於控制器主體的設計,我們提出雙參數方式之改良式PID控制器,分別透過基因演算和進化演算的平行策略搜尋確保參數設計達到性能的要求。
本論文同時考慮混合 性能指標最小化的多目標評價泛函數(multiple objective cost functional)求解之問題,該設計係使得最終決定之控制器同時滿足混合時域及頻域的性能規格,其目的有二,(i)應用 靈敏度函數呈現系統的頻域性能,(ii)應用 追蹤誤差函數界定系統的時域性能,同時以頻域強健穩定條件限制控制參數的選定範圍以確保閉路系統的強健穩定性。針對此受限制之多目標評價函數,我們提出一種求解該問題的進化策略(evolutionary strategy),來快速求解。
對於本論文所提出之設計法,我們均輔以廣泛的模擬和實驗驗証,其結果並與一些傳統PID控制器設計法加以比較,以充份確認這些方法的可行性和優越性。
This thesis presents a robust output tracking control design method for a linear brushless DC motor with modeling uncertainties. Two frequency-domain specifications directly related to the mixed sensitivity function and control energy consumption are imposed to ensure stability and performance robustness. With regard to time-domain specifications, rise time, maximum overshoot and steady state error of the step response are considered. A generalized two-parameter PID control framework is developed via genetic searching and evolutionary searching approaches to ensure the specifications imposed. The proposed design method is intuitive and practical that offers an effective way to implement simple but robust solutions covering a wide range of plant perturbation and, in addition, if provides excellent tracking performance without resorting to excessive control.
A multiple objective controller design specifications directly related to the mixed / control are also imposed which directly related to the stability robustness and optimal control on the time and frequency domains. An advanced evolution strategy is developed to solve the constrained multi-objective problem; it is a global search algorithm thus avoids trapping into the local minimum. The new design paradigm offers a way to implement simple but robust solutions that covers a wide range of plant perturbations and provides excellent tracking performance.
For the proposed design methods, complete simulation and experimental studies are performed to verify the performance and applicability of our proposed design.
感謝ii
摘要iii
Abstractiv
Contentsv
List of Figuresvi
List of Tablesviii
Chapter 1 Introduction1
Chapter 2 Preliminary5
2.1 Genetic Algorithms5
2.2 Evolutionary Algorithms9
2.3 Linear DC Brushless motor12
Chapter 3 GA-Based and EA-Based Multiobjective PID Control17
3.1 Two-parameter PID Control Scheme17
3.2 Mixed Time/Frequency Domain Specifications20
3.3 GA-Based PID Parameter Design23
3.4 Genetic Algorithms v.s. Evolutionary Algorithms28
3.5 EA-Based PID Parameter Design29
Chapter 4 EA-Based Mixed / Multiobjective PID Control33
4.1 Mixed / Control Specifications Design33
4.2 Multiobjective Optimization Design36
Chapter 5 Numerical and Experimental Results40
Chapter 6 Conclusions48
References49
[1] I. Boldea and S. A. Nasar, Linear Electric Actuators and Generators, Cambridge University Press, London, 1997.[2] N. Hemati, J. S. Thorp, and M. C. Leu, ‘Robust nonlinear control of brushless DC motors for direct-drive robotic applications,’ IEEE Trans. Industrial Electronics, vol. 37, pp. 460-468, 1990. [3] P. M. Pelczewski and U. H. Kunz, ‘The optimal control of a constrained drive system with brushless DC motor,’ IEEE Trans. Industrial Electronics, vol. 37, pp. 342-348, 1990.[4] F. J. Lin, K. K. Shyu, and Y. S. Lin, ‘Variable structure adaptive control for PM synchronous servo motor drive,’ IEE Proc. B: Electric Power Applications, vol. 146, pp. 173-185, 1999.[5] E. Cerruto, A. Consoli, A. Raciti, and A. Testa, ‘A robust adaptive controller for PM motor drives in robotic applications,’ IEEE Trans. Power Electronics, vol. 10, pp. 62-71, 1995.[6] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, New Jersey, 1996.[7] B. S. Chen and Y. M. Cheng, ‘A structure-specified optimal control design for practical applications: a genetic approach,’ IEEE Trans. Control System Technology, vol. 6, pp. 707-718, 1998.[8] C. L. Lin and T. Y. Lin, ‘An design approach for neural net-based control schemes,’ IEEE Trans. Automatic Control, vol. 46, pp. 1599-1605, 2001.[9] B. S. Chen, Y. Y. Chen, and C. L. Lin, ‘Nonlinear guidance against maneuvering target: Takagi-Sugeno fuzzy model approach,’ to appear in Intelligent Systems Techniques and Applications, 2002, Leondes (Ed), Boca Raton, FL: CRC Press. [10] H. Panagopoulos and K. J. Åström, ‘PID control design and loop shaping,’ Proc. IEEE Int. Conf. on Control Applications, pp. 103-108, 1999.[11] M. Ikeda, H. Hashimoto, and F. Harashima, ‘Robust control of linear DC motor using DSP,’ IEEE Int. Symp. Industrial Electronics, pp. 397-402, 1993.[12] N. C. Shieh, P. C. Tung, and C. L. Lin, ‘Robust output tracking control of a linear brushless DC motor with time-varying disturbances,’ IEE Proc. Electric Power Applications, 2002, to appear.[13] B. M. Chen, T. H. Lee, C. C. Hunag, Y. Guo and S. Weerasooriya, ‘An almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis, IEEE Trans. Control System Technology, vol. 7, pp. 160-174, 1999.[14] T. X. Mei and R. M. Goodall, ‘Robust control for independently rotating wheelsets on a railway vehicle using practical sensors,’ IEEE Trans. Control System Technology, vol. 9, pp. 599-607, 2001.[15] F. Aghili, M. Buehler and J. M. Hollerbach, ‘Motion control systems with positive joint torque feedback,’ IEEE Trans. Control System Technology, vol. 9, pp. 685-695, 2001.[16] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989. [17] K. Kristinsson and G. A. Dumont, ‘System identification and control using genetic algorithm,’ IEEE Trans. System, Man and Cybernetics, vol. 22, pp. 1033-1046, 1992. [18] C. Vlachos, D. Williams, and J. B. Gomm, ‘Genetic approach to decentralized PI controller tuning for multivariable processes,’ IEE Proc. D-Control Theory Applications, vol. 146, pp. 58-64, 1999.[19] Z. Michalewicz and J. B. Krawezyk, ‘A modified genetic algorithm for optimal control problems,’ Compu. Math. Appl., vol. 23, pp. 83-94, 1992.[20] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall, New York, 1995.[21] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.[22] K. Ogata, Modern Control Engineering, 3rd ed. Prentice Hall, Englewood Cliffs, 1997.[23] T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford, New York, 1996. [24] Z. Michalewicz, Genetic Algorithms + Data Structure=Evolution Programs, Springer-Verlag, New York, 1996.[25] H. P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.[26] M. K. Kim, C. G. Lee, and H. K. Jung, ‘Multiobjective optimal design of three-phase induction motor using improved evolution strategy,’ IEEE Trans. Magnetics, vol. 34, pp. 2980-2983, 1998.[27] J. H. Park and Y. K. Choi ‘An on-line PID control scheme for unknown nonlinear dynamic systems using evolution strategy,’ IEEE Proc. Evolutionary Computation, pp 759-763, 1996.[28] L. Costa and P. Oliveira ‘Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems,’ Computers and Chemical Engineering, vol. 25, pp. 257-266, 2001.[29] C. L Lin and R. M. Lai, ‘Parameter design for guidance and control system using genetic approach,’ Aerospace Science and Technology, vol. 5, pp. 425-434, 2001.[30] D. E. Walker and D. B. Ridgely, ‘Reduced order mixed / optimization with a singular constraint,’ Proc. on the American Control, Baltimore, Maryland, pp. 1128-1132, June, 1994.[31] R. H. C. Takahashi, P. L. D. Peres and P. A. V. Ferreira, ‘ / guaranteed cost PID design for uncertain systems: a multiobjective approach,’ IEEE Int. Symp. on Computer-Aided Control System Design, Dearborn, MI, pp. 315-320, September, 1996.[32] W. Zidong, H. Zeng and H. Unbehauen, ‘A novel approach to / robotic control with state estimation feedback,’ IEEE Int. Conf. on Control Applications, Trieste, Italy, vol. 2, pp. 751-755, September, 1998.[33] S. K. Yoon, G. H. Woong and Y. K. Tae, ‘An intelligent missile autopilot using genetic algorithm,’ IEEE Int. Conf. on Computational Cybernetics and Simulation, Orlando, FL, USA, vol. 2, pp. 1954-1959, 1997.[34] B. S. Chen, Y. M. Cheng and C. H. Lee, ‘A genetic approach to mixed / optimal PID control,’ IEEE Control Systems Magazine, vol. 15, pp. 51-60, 1995.[35] E. Rijanto, ‘Quasi mixed / controller for a high precision positioning device,’ IEEE Proc. on Advanced Motion Control, Nagoya, Japan, pp. 335-338, 2000.[36] M. Gen and R. Cheng, ‘A survey of penalty techniques in genetic algorithms,’ IEEE Proc. on Evolutionary Computation, Nagoya, Japan, pp. 804-809, 1996. [37] G. Kreisselmeier and R. Steinhauser, ‘Application of vector performance optimization to a robust control loop design for a fighter aircraft,’ Int. Journal of Control, vol. 37, pp. 251-284, 1983. [38] I. J. Nagrath and M. Gopal, Control Systems Engineering, Wiley, New York, 1982.[39] L. L. William, Tuning proportional-integral-derivative controller for integrator/deadtime processes. Industrial Engineering Chemical Research, 35, 3480-3483. [40] L. L. Michael and L. L. William, Essentials of Process Control, McGraw-Hill, New York.[41] G. Mitsuo and C. Runwei, Genetic Algorithm and Engineering Optimization, John Wiley & Sons, New York.[42] J. M. Maciejowski, Multivariable Feedback Design, Addison-Wesley Publishing Co., 346-350.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊