(54.236.58.220) 您好!臺灣時間:2021/02/28 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡瑞崇
研究生(外文):Ruey-Chung Tsai
論文名稱:以線性馬達為基礎之動態平台設計及分析
論文名稱(外文):Design and Analysis of Linear Motor-Based Dynamic Platforms
指導教授:林俊良林俊良引用關係
指導教授(外文):Chun-Liang Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:158
中文關鍵詞:動態平台飛行模擬器線性無刷馬達奇異性工作空間類神經
外文關鍵詞:neural networklinear motordynamicsparallel manipulatorsingularity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本論文引用線性伺服馬達的特長設計兩組六自由度動態平台; 一部利用六個線性馬達構成的六自由度動態平台。該平台主底座上具有六個利用線性同步馬達所驅動的平行導軌,每個導軌上置有一個動子,每個動子置一固定長度的桿子。六個軌道聯動提供上平台俯仰、偏向及滾轉的動作。另一部則是利用三個線性無刷同步馬達和三個直流伺服馬構成的六自由度動態平台。該平台主底座上具有三個利用線性同步馬達所驅動的平行導軌,每個導軌上置有一個動子,每個動子置一支滾珠導螺桿,分別利用一個直流伺服馬達改變桿長。三個軌道與三支連桿聯動提供上平台俯仰、偏向及滾轉的動作。由於此兩組平台具有高速偏向及滾轉動作能力因此適合作為一飛行模擬器。描述平台運動行為的逆向動態方程式、順向及逆向運動方程式將於論文中完整導出。平台運動的工作空間及奇異性中均細地研究。工作空間中的奇異位置係利用基因演算法則加以求出。對於控制部分,分別針對馬達及驅動平台設計不同的控制器。對於馬達部分,論文中所提出的馬達控制器由兩部分組成,一部分是強健回授控制律,另一部份是具學習能力的小波神經網路。在驅動平台控制部分,提出一架構簡單、不需要受控體動態模型和計算量小的小腦模型神經網路控制器(Cerebellar Model Articulation Controller, CMAC)來解決控制上的問題。由實驗模擬結果可驗證我們針對馬達及驅動平台所設計的控制器皆能對受控體作有效的控制。
Modeling, analysis, control and design of two 6 DOF platform manipulators are presented. One is 6-legs 6-DOF driven by six linear DC motors. In this architecture, the base platform has six linear slideways each actuated by a linear DC motor. The other one is 3-legs 6-DOF setup by three flexible legs sliding on three linear slideways each actuated by a synchronous linear servo motor. The flexible legs are actuated by inductive AC servo motors. Using the slideways, linear motors and AC servo motors contribute high-speed performance of motions. Inverse dynamics, inverse, forward kinematics describing the motion of the platform are derived, and workspace and singularities are analyzed. The problem of finding the precise singular attitudes is solved by applying a genetic algorithm. With regard to the control system, two types of controllers for motors (linear or AC servo motors) and platform are design respecively. For the motor, the controller proposed consists of two parts, one is a state feedback component, and the other one uses a learning feedback component constituted by a wavelet neural network. For the platform motion control system, a cerebellar model arithmetic controller is adopted to control the position and orientation of the moving platform. Extensive simulation studies are presented to verify effectiveness of the control strategy on the motors and the overall platform motion.
Contents
中文摘要i
Abstractii
Contentsiii
List of Figuresvi
List of Tablesxi
Chapter 1 Introduction1
Part A
Chapter 2 Kinematics Analysis4
2.1 Coordinates Transformation4
2.2 Inverse Kinematics6
2.3 Forward Kinematics8
Chapter 3 Dynamics Analysis13
3.1 Link Dynamics13
3.2 Moving Platform Dynamics15
3.3 Dynamics Model of the Platform18
Chapter 4 Experimental Platform Architecture21
Chapter 5 Singularity Analysis based on Genetic Algorithm23
5.1 Determination for Singularity24
5.2 Searching for Singularity25
5.3 Searching Platform Singularities Based on GA30
Chapter 6 Control of Linear Motor33
6.1 Tracking Control via a Wavelet Network36
6.2 Application to Linear Servo Control38
6.3 Control Design39
6.4 Implementation Results and Analysis41
Chapter 7 Control of Platform43
Part B
Chapter 8 Kinematics Analysis48
8.1 Coordinates Transformation48
8.2 Inverse Kinematics49
8.3 Forward Kinematics51
Chapter 9 Dynamics Analysis56
9.1 Link Dynamics56
9.2 Moving Platform Dynamics58
Chapter 10 Experimental Platform Architecture62
Chapter 11 Singularity Analysis Based on a Genetic Algorithm64
11.1 Determination for Singularity65
11.2 Searching for Singularity65
Chapter 12 Control of Linear Motors and AC Servo Motors68
12.1 Tracking Control via a Wavelet Network70
12.2 Application to Linear Servo Motor and AC Servo Motor Control74
12.3 Control Design75
12.4 Implementation Results and Analysis79
Chapter 13 Control of Platform81
Chapter 14 Conclusions88
References87
References[1]D. Stewart, “A platform with six degrees-of-freedom,” Proc Inst Mech Eng 180(Pt 1, 5), pp.371-386, 1965.[2]E.F. Fichter, “A Stewart platform-based manipulator general theory and practical construction, “International Journal of Robotics Res 5(2), pp. 157-182, 1986.[3]M. Raghavan, “The Stewart platform of general geometry has 40 configurations,” ASME J Mech Design 115(2), pp.277-282, 1993.[4]M. Ceccarelli, “A new 3 D.O.F. spatial parallel mechanism,” Mechanism Machine Theory 32, 1997, pp. 895-902, 1993.[5]J. Wang and C. Gosselin, “Kinematic analysis and singularity representation of spatial five-degree-of-freedom parallel mechanism,” J Robotic Syst 14, pp. 851-869, 1997.[6]J.H. Ryu, J. Song, and D.S. Kwon, “A nonlinear friction compensation method using adaptive control and its practical application to an in-parallel actuated 6-DOF manipulator,” Control Eng Practice 9, pp.159-167, 2001.[7]Honegger. M, Codourey. A, and Burdet. E, ” Adaptive control of the Hexaglide, a 6 dof parallel manipulator,” Proc IEEE Int Conf Robotics and Automation, pp.543 —548, 1997.[8]M. K. Lee and K. W. Park, “Kinematic and dynamic analysis of a double parallel manipulator for enlarging workspace and avoiding singularities,” IEEE Trans Robotics Automat 16, pp.1024-1034, 1999.[9]K. Kosuge, “Force control of a parallel link manipulator with hydraulic actuators,” Proc IEEE Int Conf Robotics Automat, pp.305-310, 1996.[10]J.P. Merlet, “Trajectory verification in the workspace for parallel manipulators, “J Robotic Syst 13, pp.326-333, 1994.[11]Z. Ji, “Workspace analysis of Stewart platform via vertex space,” J Robotic Syst 13, pp 631-639, 1994.[12]Z. Hao and W. Qiyi, “The kinematics and workspace analyses of a parallel manipulator for manufacturing,” Proc IEEE Int Conf Industrial Technology, pp. 647-650, 1996.[13]C.M. Luh, “Working capability analysis of Stewart platforms,” ASME J Mech Design 118, pp. 220-227, 1996.[14]J. Bessala, P. Bidaud, and B.B. Ouezdou, “Analytical study of Stewart platforms workspaces,” Proc IEEE Int Conf Robotics Automat, pp.3179-3184, 1996.[15]H. Zhuang, “Optimal design of robot accuracy compensators,” IEEE Trans Robotics Automat 96, pp.854-857, 1993.[16]K.H. Hunt, Kinematics Geometry of Mechanisms, Oxford University Press, Great Britain, 1978.[17]J.P. Merlet, “Singular configurations of parallel manipulators and Grassmann geometry,” Int J Robotics Res 8(5), pp.45-56, 1989.[18]O. Ma and J. Angeles, “Architecture singularities of parallel manipulators,” Int J Robotics Automat 7, pp.23-27, 1992.[19]D. Kim, W. Chung, and Y. Youm, “Singularity analysis of 6-DOF manipulators with the analytical representation of the determinant,” Proc IEEE Int Conf Robotics Automat, pp.889 —894, 1999.[20]K. Liu and F. Lewis, “The singularity and dynamics of a Stewart platform manipulator,” J Intelligent Robotic Syst 8, pp.287-308, 1993.[21]F.T. Cheng, T.L. Hour, Y. Y. Sun, and T. H. Chen, “Study and resolution of singularities for a 6-DOF PUMA manipulator,” IEEE Trans Systems Man Cybernetics 27 (Pt B), pp.332—343, 1997.[22]C.L. Collins and G.L. Long, “The singularity analysis of an in-parallel hand controller for force-reflected teleoperation,” IEEE Trans Robotics Automat 11(5), pp.661-669, 1995.[23]B. Dasgupta and T. S. Mruthyunhaya, “Singularity-free path planning for the Stewart platform manipulator,” Mechanism Machine Theory 33(6), pp.711-725, 1998.[24]D.E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.[25]C.C. Nguyen and C.E. Combell, “Experimental study of motion control and trajectory planning for a Stewart Platform robot manipulator,” Proc IEEE Int Conf Robotics and Automation, pp.1873-1878, 1991.[26]D.H. Kim, J. Y. Kang, and K.L. Lee, “Robust tracking control design for 6 dof parallel manipulator,” J Robotic Syst 17, pp.527-547, 2000.[27]L.C. Lin and M.U. Tsay, “Modeling and control of micropositioning systems using Stewart platforms,“ J Robotic Syst 17(1), pp.17-52, 2000[28]N.I. Kim and C.W. Lee, “High speed tracking control of Stewart platform manipulator via enhanced sliding mode control,” Proc IEEE Int Conf Robotics Automat, pp.2716-2721, 1998.[29]C. Pernechele, F. Bortoletto, E. Giro, “Neural network algorithm controlling a hexapod platform,” Proc IEEE-INNS-ENNS Int Conf Joint, pp.349 -352, 2000.[30]S. Madhav, Quality Engineering Using Robust Design, AT&T Bell Laboratories, 1989.[31]C.H. Hwang, Mechanism design and dynamic analysis of a high-speed linear motor actuating platform system, Master Thesis Institute of Aeronautics and Astronautics, Chung-Hua University, Hsinchu, Taiwan, 2000.[32]D.G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York, 1969.[33]H.T. Huang, Wavelet Neural Networks in Servo Control, Master Thesis, Institute of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan, 2000. [34]I. Daubechise, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans Information Theory, vol. 36, pp. 961-1005, 1990.[35]Z.O. Zhu, Z.P. Xia, D. Howe and P.H. Mellor, “Reduction of cogging force in slotless linear permanent magnet motors”, IEE Proc. Electric Power Applications, vol. 144, pp. 277 —282, 1997.[36]J. S. Albus, “A new approach to manipulator control: the cerebellar model articulation controller (CMAC),” J. Dynamic syst, Meas, Contr, Trans. ASME, pp.220-227, 1975.[37]Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller for robot manipulators, “IEEE Trans Systems, Man, and Cybernetics part c 30(1), pp.22-31, 2000.[38]J.X. Tang, Identifying dynamic system and real-time simulation of a high-speed linear motor actuating platform system, Master Thesis Institute of Aeronautics and Astronautics, Chung-Hua University, Hsinchu, Taiwan, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔