跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江宗勳
研究生(外文):Zong-Xun Jiang
論文名稱:利用線性分析方法評估糖尿病患動態腦血流調控機制
論文名稱(外文):The Assessment of Dynamic Cerebral Autoregulation in Diabetes Using Linear Analysis
指導教授:邱創乾邱創乾引用關係
指導教授(外文):Chuang-Chien Chiu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:74
中文關鍵詞:糖尿病腦血流調控機制腦血流自動調控機制非侵入式線性分析
外文關鍵詞:diabetecerebral autoregulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

腦血管疾病近年來一直是國內十大死因的前三名[1],而腦血流自動調控機制是關係著腦血管疾病發作的重要因子。但目前偵測腦血流所使用的設備﹙如:磁共振造影儀、正子射出斷層攝影儀等﹚皆是十分昂貴且所擷取的腦血流訊號非但不能連續擷取,更不易完成動態的檢查動作﹙如:起站的動作﹚,如果使用成本較低的穿顱都卜勒超音波,即能達到即時、連續擷取且較易完成動態的檢查動作。故本研究的目的是利用非侵入的檢測方式觀察血壓與腦血流之間的變化關係,進而探討腦血流自動調控機制之調控模式。以正常人、糖尿病無神經病變病人及糖尿病有神經病變病人各10位為實驗對象,受測者以平躺與被動搖起的姿勢,使用穿顱超音波連續擷取中大腦動脈之腦血流訊號,以及使用經指連續血壓脈搏計連續擷取手指之連續脈波訊號量測,針對腦血流自動調控機制的線性部份進行各項時域、頻域及時-頻域的分析。
從時域的結果顯示,糖尿病有神經病變病人其平均血壓 (平躺:91.55□14.85 mmHg,被動搖起:74.12□13.35 mmHg) 在被動搖起時明顯的下降了,而正常人的平均血壓(平躺:88.83□9.17 mmHg,被動搖起:93.97□11.39 mmHg)則無此結果。除此之外,群化分析結果也顯示,糖尿病有神經病變病人之平均血壓與平均腦血流速分佈群間的距離量測結果(平躺分佈群至被動搖起平均的距離:20.00□6.22,被動搖起分佈群至平躺平均的距離:20.10□6.09,平躺平均至被動搖起平均的距離:19.71□6.17)均比正常人(平躺分佈群至被動搖起平均的距離:12.45□6.00,被動搖起分佈群至平躺平均的距離:12.66□5.70,平躺平均至被動搖起平均的距離:10.88□7.00)大。而觀察腦血流自動調控曲線分析結果,糖尿病有神經病變的病人(平躺平均至被動搖起平均的斜率結果:1.34□2.66)也比正常人(平躺平均至被動搖起平均的斜率結果:0.87□0.82)大。另外,在頻域的分析結果亦顯示,糖尿病有神經病變的病人其不論是平均血壓或是平均腦血流速的變動均比正常人小。綜合各項線性分析結果均顯示正常人與糖尿病病人有明顯的差異,而這些結果對於未來的臨床研究有正面的價值。我們也期望將來可以將此研究運用到臨床診斷上,提供醫師在診斷腦血管疾病的參考指標。
Abstract

In recent years, stroke is the third leading cause of mortality in Taiwan. One of the most important factors contributing to stroke is the regulation of cerebral blood flow (CBF) which is influenced by cerebral autoregulation (CA). Most of clinical instruments for detecting CBF (such as MRI, PET) are very expensive and not suitable for continuous movement. In this study, the arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) were continuously measured by Finapres and transcranial Doppler (TCD) respectively during the supine and tilt-up positions. The mean arterial blood pressure (MABP) and mean cerebral blood flow velocity (MCBFV) time series were calculated. Ten healthy adults, ten diabetes without autonomic neuropathy, and ten with autonomic neuropathy (sex and age matched) were examined in this study. The CA model was analyzed by linear analysis in time-domain, frequency-domain and time-frequency domain of clinical real-time data of ABP and CBF. The main purpose of this study is to use noninvasive and signal processing techniques to observe the fluctuations between the ABP and CBFV.
The results of time-domain analysis show that MABP of diabetic autonomic neuropathy (DAN) (supine:91.55□14.85 mmHg, tilt-up:74.12□13.35 mmHg) decrease significantly during tilt-up than that of healthy adults (supine:88.83□9.17 mmHg, tilt-up:93.97□11.39 mmHg). In addition, the results of cluster analysis based on distance measurement using the scattered plot between MABP and MCBFV show that DAN (supine-tilt-up mean:20.00□6.22, tilt-up-supine mean:20.10□6.09, supine mean-tilt-up mean:19.71□6.17) larger than healthy adults (supine-tilt-up mean:12.45□6.00, tilt-up-supine mean:12.66□5.70, supine mean-tilt-up mean:10.88□7.00). To observe the results of autoregulation curve analysis, the slope of DAN (slope between supine mean-tilt-up mean:1.34□2.66) also larger than healthy adults (slope between supine mean-tilt-up mean:0.87□0.15). Finally, the results of frequency-domain analysis show that the fluctuations of DAN both in MABP and MCBFV are significantly smaller than that of healthy adults. It can obtain similar results form other linear analysis. Linear analysis exhibits significantly different between healthy adults and DAN. The results are helpful for clinical practice and can provide critical information for physicians.
Keywords:cerebral autoregulation, noninvasive, linear analysis
目錄
中文摘要i
Abstractiii
感謝v
目錄vi
圖目錄ix
表目錄xi
第一章 前言1
1.1研究動機1
1.2國內外相關研究1
1.3研究目的與重要性2
第二章 研究背景5
2.1糖尿病6
2.2腦血管疾病8
2.3腦血流自動調控機制9
第三章 研究方法11
3.1前處理12
3.1.1 估測算法12
3.1.2 平均算法12
3.2時域分析14
3.2.1 平均值與標準差14
3.2.2交越相關分析15
3.2.3 相關係數分析15
3.2.4 腦血流自動調控曲線分析16
3.2.5 群化分析18
3.3頻域分析19
3.3.1 功率頻譜密度分析20
3.3.2 短時距傅立葉轉換分析21
3.3.3小波轉換分析23
3.3.3.1連續小波轉換23
3.3.3.2離散小波轉換23
3.3.3.3小波封包轉換30
3.3.3.4小波轉換之低頻與高頻比值31
第四章 系統架構32
4.1實驗對象33
4.2非侵入式生理檢查程序33
4.3系統架構35
第五章 實驗結果與討論38
5.1時域分析結果.39
5.1.1平均值與標準差結果41
5.1.2交越相關分析結果42
5.1.3腦血流自動調控曲線分析結果.44
5.1.4群化分析結果.47
5.2頻域分析結果.49
5.2.1功率頻譜密度分析49
5.3時-頻域分析結果52
5.3.1短時距傅立葉轉換分析.52
5.3.2小波轉換分析54
5.4討論57
第六章 結論與未來展望60
6.1結論60
6.2貢獻60
6.3未來展望61
參考文獻62
附錄一 程式界面66
附錄二 已發表之國內會議論文(一)72
附錄三 已發表之國內會議論文(二)73
附錄四 已發表之國內會議論文(三)74
參考文獻[1] 行政院院衛生署公佈之年衛生統計指標(網站:http://www.doh.gov. tw/), 2001.[2] K. Pyorala, M. Laakso and M. Uusitupa, “Diabetes and Atherosclerosis: An Epidemiologic View”, Diabetes Metabolism Review, Vol:3, pp. 464-524, 1987.[3] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger and R. J. Cohen, “Power Spectrum Analysis of Heart Rate Fluctuation : A Quantitative Probe of Beat-to-Beat Cardiovascular Control”, Science, Vol:213, pp. 220-222, 1981.[4]B. Pomeranz, R. J. B. Macaulay, M. A Caudill., I. Kutz, D. Adam, D. Gordon, K. M. Kilborn, A. C. Barger, D. C. Shannon, R. J. Cohen and H. Benson, “Assessment of Autonomic Function in Humans by Heart Rate Spectral Analysis”, American Journal of Physiology, Vol:48, pp. 151-153, 1985.[5]M. Pagani, et al., “Power Spectral Analysis of Heart Rate and Arterial Pressure Variabilities As A Marker of Sympatho-Vagal Interaction in Man and Conscious Dog”, Circulation Research, Vol:59, pp. 178-193, 1986.[6] T. B. J. Kuo, C. M. Chern, W. Y. Sheng, W. J. Wong, and H. H. Hu, “Frequency Domain Analysis of Cerebral Blood Velocity and Its Correlation with Arterial Blood Pressure, Journal cerebral Blood Flow Metabolism, Vol:18, pp. 311-318 , 1998.[7] R. R. Diehl, D. Linden, D. Lucke and P. Berlit, “Phase Relationship between Cerebral Blood Flow Velocity and Blood Pressure: A Clinical Test of Autoregulation”, Stroke, Vol:26, pp. 1801-1804, 1995.[8] W. J. Wong, H. H. Hu, Y. K. Lo, Y. O. Luk and C. M. Chern, “Transcranial Doppler in Cerebrovascular Disease”, Recent Advances in Neurology, pp. 13-118, 1992.[9] 沈乾龍、邱創乾及葉守正,“利用腦血流與血壓變化探討腦血流自動調控機制”,醫學工程科技研討會論文集,pp. 293-294, 1998.[10] 沈乾龍、邱創乾及葉守正,“利用交越相關分析探討腦血流調控機制”,醫學工程科技研討會論文集,pp. 331-332, 1999.[11] 沈乾龍、邱創乾及葉守正,“腦血流調控機制之穩態與動態分析”,工程科技與中西醫學應用研討會論文集,pp. 84-87, 2000.[12] U. Wiklund, M. Akay and U. Niklasson, “Short-Term Analysis of Heart-Rate Variability by Adapted Wavelet Transforms”, IEEE Engineering in Medicine and Biology, pp. 113-118, 1997.[13] Y. Fusheng and L. Wangcai, “Modeling and Decomposition of HRV Signals with Wavelet Transforms”, IEEE Engineering in Medicine and Biology, pp. 17-22, 1997.[14] L. G. Gamero, M. Risk, J. F. Sobh, A. J. Ramirez and J. P. Saul, “Heart Rate Variability Analysis Using Wavelet Transform”, IEEE Computers in Cardiology, 1996.[15] 林茂村等編譯,”人體生理學”,文京圖書股份有限公司,1998.[16] T. Vraamark, G. Waldemar, S. Strandgaard and O. B. Paulson, “Angiotensin II Receptor Antagonist CV-11974 and Cerebral Blood Flow Autoregulation”, Journal of Hypertension, Vol:13, pp. 755-761, 1995.[17] J. F. Schmidt, G. Waldemar, A. Vorstrup, A. R. Andersen, F. Gjerris and O. B. Paulson, “Computerized Analysis of Cerebral Blood Flow Autoregulation in Humans: Validation of A Method for Pharmacologic Studies”, Journal of Cardiovasc Pharmacol, Vol: 15, No.6, pp. 983-988, 1990.[18] 戴久永編著,”統計概念與方法”,三民書局,1998.[19] 方世榮編著,”基礎統計學”,華泰書局,1999.[20] 邱創乾編著,“資料擷取系統實務”,立治有限公司,1997.[21] O. Rioul and M.Vetterli, “Wavelet and Signal Processing”, IEEE Signal Processing Magazine, pp. 14-38, 1991.[22] A. C. Mark, “Wavelets-A New Tool for Signal Processing Analysis,” IEEE Digital Avionics Systems Conference, pp. 54-59, 1993.[23] M. Vetterli and C. Herley,” Wavelets and Filter Banks: Relationships and New Results”, IEEE International Conference on Acoustics, Speech and Signal Processing, Vol: 3, pp. 1723-1726, 1990.[24] B.Carnero and A. Drygajlo “Fast Short-Time Orthogonal Wavelet Packet Transform Algorithms” IEEE International Conference on Acoustics, Speech and Signal Processing, Vol: 2, pp. 1161-1164, 1995.[25] P. M. Bentley and J. T. E. McDonnell, “Wavelet Transforms: An Introduction”, Electronics and Communication Engineering Journal, pp. 175-186, 1994.[26] H. Zou and H. T. Ahmed, “Discrete Orthogonal M-Band Wavelet Decompositions”, IEEE International Conference on Acoustics, Speech and Signal Processing, Vol: 4, pp. 605-608, 1992.[27] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 674-693, 1989. [28] O. Rioul and P. Duhamel, “ Fast Algorithms for Discrete and Continuous Wavelet Transforms”, IEEE Transactions on Information Theory, Vol: 38, pp. 569-586, 1992.[29] N. Erdol, F. Bao and Z. Chen, “Wavelet Interpolation: From Orthonormal to The Oversampled Wavelet Transform”, IEEE International Conference on Acoustics, Speech and Signal Processing, Vol: 2, pp. 1093-1096, 1998.[30] S. Mallat, “A Wavelet Tour of Signal Processing”, 1998.[31] Wavelet and Filter Bank Design Toolkit Reference Manual, 1997.[32] M. Misiti, Y. Misiti, G. Oppenheim and J. M. Poggi, ”Wavelet Toolbox User’s Guide,Version 1”, The Mathworks, 1997. [33] P. P. Vaidyanathan, “Multirate Systems and Filter Banks”, pp. 189, 1999.[34] C. C. Chiu and S. J. Yeh, “Assessment of Cerebral Autoregulation Using Time-Domain Cross-Correlation Analysis”, Computers in Biology and Medicine, Vol:31, No. 6, pp. 471-480, 2001.[35] 沈乾龍,“腦血流自動調控模式之建立與臨床應用”,逢甲大學自控所碩士論文,2000.[36] P. J. Eames, M. J. Blake, S. L. Dawson, R. B. Panerai, J. F. Potter, ”Dynamic Cerebral Autoregulation and Beat to Beat Blood Pressure Control Are Impaired in Acute Ischaemic Stroke”, Journal of Neurology, Neurosurgery and Psychiatry, Vol:72, pp. 467-472, 2002.[37] R. L. Bondar, P. T. Dunphy, P. Moradshahi, M. S. Kassam, A. P. Blaber, F. Stein, R. Freeman,” Cerebrovascular and Cardiovascular Responses to Graded Tilt in Patients With Autonomic Failure”, Stroke, Vol:28, pp. 1677-1685, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 簡淑伶、鐘敏菁 (民84)。新竹縣國民中小學中途輟學現況之探討。竹縣文教, 10, 69-72。
2. 鄧煌發 (民89a)。輟學少年之家庭與社會學習因素的比較分析。犯罪學期刊,五期。
3. 鄭崇趁 (民83)。國民中小學中途輟學學生的成因與對策。教育研究雙月刊,36,27-31。
4. 劉佩雲 (民84)。國民中小學學生中途輟學成因及輔導策略之探討。教育研究資訊,3卷,2期,頁85~93。
5. 甄曉蘭 (民85)。從典範轉移的再思論質的研究崛起的意義。嘉義師院學報,十期,頁119-146
6. 黃德祥、向天屏 (民88)。中輟學生形成原因與對策之研究。訓育研究,38,16-33。
7. 郭至豪、郭靜晃 (民86)。臺北市單親家庭青少年生活壓力、福利服務介入與其心理健康之研究。教育與心理研究, 20, 243-270。
8. 張鈿富 (民85)。高級職業學校學生中途輟學原因與輔導策略之研究。教育資料文摘, 38(1), 113-134。
9. 張如杏、胡幼慧。(民82)。青少年心理衛生與社會因素之探討-北市高職五專學生憂鬱症狀、自殺意念與自殺企圖之研究。中華醫務社會工作學刊,3期,77-92頁。
10. 張人傑 (民83)。改進輟學研究需解決的問題。教育研究雙月刊,37期,頁28~35。
11. 高琦玲 (民83)。台北市高職補校學生輟學傾向危險群之研究。社會教育學刊,25期,233-251頁。
12. 邱文忠 (民83)。中途輟學影響因素暨模式及其輔導策略之探討。教育研究, 36, 32-41。
13. 吳芝儀 (民89)。國中階段中輟學生輟學經驗與危機因素之研究。犯罪學期刊,五期, 179-232。