跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鴻亨
研究生(外文):Hong-Heng Lin
論文名稱:以超低進給速度進行深切緩進研磨及鏡面研磨二階段研磨加工製程於氮化矽陶瓷材料之研究
論文名稱(外文):Study of Two-step Machining Process by Creep Feed Grinding and Mirror Finish Grinding with Ultralow Feed Rates for Silicon Nitride
指導教授:駱榮富
指導教授(外文):Rong-Fue Long
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:166
中文關鍵詞:二階段複合加工製程氮化矽研磨效率
外文關鍵詞:Silicon nitridegrinding efficiencytwo-step combined grinding process
相關次數:
  • 被引用被引用:1
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
氮化矽陶瓷具有多項良好的物理性質和化學性質,已被廣泛應用於各種領域,陶瓷坯體在燒結時所產生的體積收縮經常造成尺寸規格的偏差,於實際應用時往往須透過機械加工手段以達到所需之精確度,吾人嘗試以深切緩進研磨及鏡面研磨二階段加工製程手段,使難加工之陶瓷坯體期能獲得較高材料移除效果及光滑平整無加工缺陷之工件表面。氮化矽(Si3N4)陶瓷材料,因其具有高強度、高硬度、低韌性等特性,於加工過程中易產生脆性破壞,因而增加了氮化矽陶瓷材料研磨加工製程的困難度。同時,精密陶瓷之研磨加工製程常會直接影響到陶瓷產品的機械性質和表面特性,導致機械研磨加工成本佔陶瓷產品生產總成本的比例頗高。尋找一高效率高品質的研磨加工製程,將是開發及提昇氮化矽陶瓷產品效能上的上一個重要課題。
對氮化矽陶瓷加工件而言,研磨加工參數的設定對於加工件品質、砂輪損耗及加工效率的影響頗鉅,且具有相當的挑戰性。因此,本實驗利用不同的研磨加工參數包括砂輪種類、進刀量、砂輪轉速、工作台速度、添加氧化鋁自由磨粒等,對氮化矽陶瓷材料實施深切緩進研磨及鏡面研磨二階段複合加工製程。研究重點為探討不同研磨加工條件對氮化矽加工件表面的破壞形態、表面完整性及加工效率的影響關係。同時,我們將以SEM、AFM、XRD、ECSA及表面粗度儀等設備分析檢測Si3N4加工件表面的加工質量,亦計算材料移除率及比研磨能量,以利評估其研磨加工效率,且針對二階段加工製程機制作做一系統性探討。
實驗結果顯示二階段研磨加工製程可有效改善單純進行深切緩進研磨所產生的加工損傷,並提昇單純進行鏡面研磨之材料移除率,使整體的加工品質提昇,加工成本降低。以號數#1200WA砂輪進行二階段研磨加工中之第二階段鏡面研磨製程,可獲奈米級工件中心線表面粗度值(Ra = 34 nm)。而以號數#3000鑽石砂輪進行相同參數之加工製程,可獲最佳工件中心線表面粗度值(Ra = 24 nm)。添加氧化鋁自由磨粒確實有輔助修整工件表面之效果,透過自由磨粒與工件表面之相互磨耗,可去除工件表面的微小損傷及裂紋,使工件表面達到高精度的加工品質
本研究發現使用低號數D#270砂輪進行第一階段深切緩進研磨能夠快速大量移除工件表面材料,進而以高號數#1200WA砂輪及#3000及#5000鑽石砂輪進行添加粒徑3 □m氧化鋁自由磨粒之第二階段鏡面研磨加工,搭配進刀量1 □m/pass、砂輪轉速3000 rpm及工作台速度1 m/min等研磨加工製程參數,可獲最佳的氮化矽陶瓷工件表面加工品質。

關鍵詞:氮化矽、研磨效率、二階段複合加工製程、深切緩進研磨、鏡面研磨、氧化鋁自由磨粒漿料、超慢工作台速度、加工損傷、ESCA、AFM。
ABSTRACT

Post-sintering grinding and polishing processes are a common practice to eliminate the occurrence of dimensional non-uniformity of ceramic materials due to the shrinkage during sintering, however such a process also needs to meet the requirements of good machined surface quality with least machining damages introduced in the ceramic bodies. Silicon nitride, as our interest in this study, is well known for its remarkable mechanical properties such as high strength, high elastic modulus, high specific grinding energy, low toughness, and its fracture behavior associated with the brittle mode, which would heighten the difficulty of machining process and the machining cost as well. The machining process would directly affect the mechanical properties of surface and sub-surface regions of silicon nitride ceramics. Thus, this research is aimed to investigate how to achieve better ceramic performance and higher grinding efficiency via the two-step combined grinding process through the creep-feed grinding and the mirror-finish grinding for enhanced machining performance of silicon nitride based ceramic products.
There are various machining parameters involved in the two-step combined grinding process such as the abrasive type and bond type of grinding wheels, depth of cut, and wheel speed, and the application of alumina free abrasive slurry. These factors would substantially affect the ceramic workpiece quality, wear of grinding wheel and machining efficiency in such a grinding process. This work was meant to systematically investigate how these machining parameters would influence surface fracture mechanism of silicon nitride, surface integrity, and grinding efficiency as a result of the two-step combined grinding process. Both machined surface quality and effectiveness of two-step grinding process are evaluated by the analysis of SEM, AFM, XRD, ESCA and profilometer.
The results indicated that the greatly improved machining efficiency can be achieved through the creep-feed grinding in conjunction with mirror-finish grinding for fine-grained Si3N4 doped with 2 wt% Al2O3 and 6 wt% Y2O3 (avg. grain size 0.306 □m) with either diamond or white alumina (WA) wheels. The minimum average surface roughness (Ra) of Si3N4 samples,34 nm and 24 nm, was resulted from using #1200 WA wheel and #3000 diamond wheel at the second step mirror-finish grinding, respectively. The residual stress at surface and sub-surface zones of Si3N4 responding to grinding process, which was qualitatively examined by lowering and broadening of major XRD peaks, was similar for both diamond and WA wheels as the same machining parameters in mirror-finish grinding were employed. The injection of alumina free abrasive slurry into the grinding contact zone between the wheel and workpiece was demonstrated as an effective means to illuminate the fine machining damage and microcracks at sample surface by exerting the addition wear of silicon nitride sample by free abrasives during the grinding process.
In this study, we found that the first-step creep feed grinding process by using coarse-grit #270 diamond wheel (avg. grit size 53 □m) would reach maximum material removal rate, which can be followed by the second-step mirror-finish grinding process as using fine-grit #1200WA, #3000 diamond or #5000 diamond wheel in conjunction with the alumina free abrasive (3 □m). The optimal surface quality for silicon nitride under the two-step grinding process was achieved with 1□m/pass depth of cut, 3000 rpm wheel speed, and slow table feed rate of 1 m/min.
Keywords: Silicon nitride, grinding efficiency, two-step combined grinding process, creep-feed grinding, mirror-finish grinding, alumina free abrasive slurry, ESCA, AFM, slow table feed, machining damage
目 錄
中文摘要……………………………………………………………….I
英文摘要……………………………………………………………….III
目錄……………………………………………………………………V
圖目錄………………………………………………………………..IX
表目錄……………………………………………………………….XV
第一章 緒 論…………………………………………………….....1
1.1 前言………………………………………………………….1
1.2 研究之背景及目的………………………………………….5
第二章 理論基礎…………………………………………………….12
2.1 氮化矽基複合陶瓷材料簡介及其實際應用……………...12
2.1.1 氮化矽( Si3N4 )簡介…………………………………..….12
2.1.2 氮化矽基複合陶瓷材料相關性質之實際應用………….14
2.2 研磨加工基本原理………………………………………...15
2.2.1 砂輪和研磨研削力………………………………………15
2.2.2 研磨加工之特色…………………………………………21
2.2.3 研磨區域的交互作用……………………………………22
2.2.4 陶瓷工件的切屑形成………………………………..30
2.2.5 砂輪的削正與削銳…………..................................37
2.3 研磨加工種類…………………………………………......39
2.3.1 深切緩進研磨與鏡面研磨………………........................39
2.3.2 細磨粒白色氧化鋁砂輪與氧化鋁自由磨粒於鏡面研
磨之影響………................................................................42
2.4 研磨加工參數對加工件表面品質與機械強度之影響.......44
2.4.1 進刀量、工作台進給速度及砂輪轉速對加工件表面
粗度與機械強度之影響……….…………………….......44
2.4.2 磨粒尺寸、研磨加工方向及表面粗度…………............47
2.4.3 切削液種類………….......................................................51
2.5 Si3N4陶瓷材料之加工損傷行為………………………….52
2.5.1 表面與次表面的加工損傷……………………………....52
2.5.2 殘留應力……………………………………………...….54
2.5.3 加工變質層………………………………………………54
2.5.4 AFM於鏡面的分析……………………………………..55
2.6 研磨加工的磨耗情形….………………………………......57
2.6.1 砂輪表面的磨耗……………………................................57
2.6.2 工件表面的磨耗………....................................................58
2.7 加工成本與加工效率……...................................................58
第三章 實驗步驟與方法…………………………………………...61
3.1 氮化矽粉體的製備………………………………………...61
3.2 氮化矽坯體成形、燒結、與加工件前處理………………64
3.3 二階段研磨加工製程……………........................................66
3.4 磨加工製程與加工件性質之評估………………................70
3.4.1 材料移除率………………………………...........................70
3.4.2 加工件之比研磨能量…………………………………....72
3.4.3加工件之磨後殘留量………………..………..….....72
3.4.4表面粗度及表面完整性………………………………......73
3.4.5氮化矽加工件之殘留應力的量測……………………........75
3.4.6 三點抗彎強度……………………………………...............77
3.4.7 括痕試驗…………………………………….......................77
3.4.8加工件表面的顯微結構之觀察分析……………………....79
3.4.9 加工件表面之化學分析電子儀探測…………..................80
第四章結果與討論……………………………………………….…82
4.1 S3N4加工試片之顯微結構與機械性質………….………..82
4.2 S3N4加工件之材料移除率與比研磨能量…………….......85
4.3 S3N4加工件之表面粗度與表面平整度…………………...89
4.4 括痕試驗…………………..................................................103
4.5 加工參數對於加工件殘留應力與加工件強度………......107
4.5.1 殘留應力...............................................................................107
4.5.2 三點抗折強度………..........................................................112
4.6 S3N4加工件之表面加工品質………..................................116
4.6.1 加工件表面之SEM顯微結構………………………….116
4.6.2 加工件表面之AFM顯微結構………………………….133
4.7 S3N4加工件之表面磨潤化學…………..............................143
4.8 本實驗工作的未來方向與建議…………………………..152
第五章結論………………………………………………………....156
參考文獻……………………………………………………………..159
致謝........……………………………………………………………..164
作者簡歴……………………………………………………………..166
參考文獻1.駱榮富, “研磨加工對氧化釔相穩定化氧化鋯表面顯微結構的影響,” NSC-85-2216-E-035-21報告 (1996)2.左培倫, 謝榮哲, “精密陶瓷之磨粒加工,” 陶瓷技手冊(上), 中華民國粉末冶金協會出版, pp. 276-287 (1994)3.セラミックス加工研究會, “ファインセラミックスの精密加工,” 工業調查會, 1990, pp. 1-34.H. H. K. Xu and S. Jahanimr, “Transitions in the mechanism of materials removal in abrasive wear of alumina ,” Wear, 192 (1996) 228-325.B. P. Bandyopadhyay, “The effects of grinding on strength and surface finish of two silicon nitride ceramics,” J. Mater. Tech., 53 (1995) 533-5436.O. Desa and S. Bahadur, “ Material removal and subsurface damage studies in dry and lubricated single-point scratch tests on alumina and silicon nitride,” Wear, 225-229 (1999) 1264-1275 7.I. A. Chou et al., “Machining-induce surface residual stress behavior in Al2O3-SiC nancom-posites,” J. Am. Ceram. Soc., 79 [9] 2403-409 (1996)8.W. Pfeiffer and T. Hollstein, “ Influence of grinding parameters on strength-dominating near-surface characteristics of silicon nitride ceramics,” J. Am. Ceram. Soc., 17 (1997) 487-4949.Hadfield, M. and S. Tobe, “ Residual stress measurements of hot isostatically pressed silicon nitride rolling elements,” Ceramics International, 24 ( 1998) 387-39210.H. K. Tonshoff and E. Brinksmeier, “Determination of mechanical and thermal influences on machined surfaces by microhardness and residual stress analysis,” Annal of the CIRP, 29 [2] 519-30 (1980)11.H. H. K. Xu, S. Jahanmir, and L. K. Ives, “ Material removal and damage formation mechanisms in grinding silicon nitride,” J. Mater. Res., 11 [7] 1717-1724 (1996) 12.H. H. K. Xu and S. Jahanmir, “Simple technique for observing subsurface damage in damage in machining of ceramics,” J. Am. Ceram. Soc., 77 [5]1388-90 (1994)13.H. H. K. Xu, L. Wei, and S. jahanmir, “ Grinding force and microcrack density in abrasive maching of silicon nitride,” J. Mater. Res., 10 [12] 3204-3209 (1995) 14.林宏葬、邱能信、趙崇禮、方淳民、張毅、洪耀第、施純霖;超精密加工矽晶圓之加工變質層研究,磨粒會訊, 6 (1991) pp. 32-3715.吳東權,“奈米技術應用於機械領域之展望,”磨粒會訊,11 (1998) pp. 29-3616.P.B. Narayam, A.S. Brar, and J. P. Shama“Lapping and Polishing of Ceramics: Some Concerns and Solutions,”Solid State Technology (1988) pp.l51-15317.M. N. Gardos and R.G. Hardisty ,“Fracture toughness and hardness dependent polishing wear of Silicon Nitride Ceramics,”Tribology Transations, 36 [4] 652-60 (1993)18.施治宏, “氧化鐿助燒結劑對於氮化矽陶瓷結構與機械性質影響之研究,” 碩士論文, 國立成功大學材料科學及工程研究所(1994)19.R. Grun, “The crystal structure of □-Si3N4 ; structural and stability considerations between □- and □-Si3N4,” Acta. Cryst., 35 (1979) 800-80420.林江財, “德國1993年氮化矽陶瓷會議後記,” 工業材料, 85 (1994) 47-4821.中國砂輪公司, “砂輪的基本認識,” 精密研磨加工技術概說, (1990) pp. 3-922.林維新, “CBN磨輪研削加工技術,” 機械技術出版社, pp. 4-8 (1993)23.蔡宗河, “砂輪的結合劑,” 陶瓷的機械加工, (1991) pp. 101-10524.蔡欣正, “研磨輪之性質,” 機械精密加工, (1985) pp. 129-148 25.蔡宗河, “砂輪的集中度,” 陶瓷的機械加工, (1991) pp. 97-10026.林有均, “研磨加工對氧化釔相穩定氧化鋯表面微結構的影響,” 碩士論文, 逢甲大學材料科學研究所 (1996)27.貴志浩三, 市田良夫, “ファインセラミックスの鏡面研磨,” 機械と工具, 1989年2月, pp. 65-6928.柴田順二, 後藤崇之, “砥石と工作物の接觸面內における研削液の冷卻作用,” 日本機械學會論文集C, 56 [527] 1940-1946 (1990)29.蔡欣正, “研磨理論,” 機械精密加工, (1985) pp. 127-13030.蔡欣正, “切削理論,” 機械精密加工, (1985) pp. 17-2531.中國砂輪公司, “研磨工作基本原理, ”精密研磨加工技術概說,(1990) pp.18-3132.K. Surbramanian, “Principles of finishing ceramic,” Mater. Sci. & Techn., Vol. 17B, Processing of Ceramic, Part II, VCH, (1993) pp. 224-23933.J. Conway, J. C. Kirchner, H. P., “Crack Branching as a mechanism of crushing during grinding,” J. Mater. Sci., 69 603 (1988)34.杉田忠彰, 上田完次, 遠藤勝義, “硬ぜい材料のマイクロ切削における塑性變形型材料除去の可能性,” 精密工學會誌, 52 [12] 2138-2141 (1986)35.金富安, 關忠裕, 安藤柱, “窒化ケイ素の強度特性に及ぼす溫度と研削の影響に關する研究,” 日本機械學會論文集A, 58 [548] 627-633 (1992)36.太田稔, 宮原克敏, 庄司克雄, “窒化ケイ素の研削面の殘留應力に關する-考察,” 精密工學會誌, 63 [1] 91-95 (1997)37.蔡宗河, “塑性變形除去材料的可能性,” 陶瓷的機械加工, (1991) pp. 124-12838.T. A. Bifano, T. A. Dow and R. O. Scattergood, “Ductile regime grinding : a new Technology for machining brittle materials, “ J. Eng. Ind., 113 (1991) 184-18939.Y. Ichida, “Mirror finish grinding of □-SiAlON with fine grained diamond wheel,” Yogyo Kyohoi, 94 (1994) pp 194-20040.杉田忠彰, 上田完次, “エンジニアリングセラミックスの機械加工,” 機械の研究, 1984年10月號, pp. 1-441.杉田忠彰, 上田完次, “エンジニアリングセラミックスの機械加工,” 機械の研究, 1984年11月號, pp. 39-4342.H. K. Tonshoff, R. Telle and P. Roth, "Chip Formation and Material Removal in Grinding of Ceramics," S.M.E. Report, No. MR90-539 (1990)43.今中治, “セラミック加工の基礎(總論II),” 工業材料, 32 [6] 116-121 (1985)44.K. Surbramanian, S. Ramanath and M. Tricard, ”Mechanism of material removal in precision production grinding of ceramic,” J. Man. Sci & Eng., 119 (1997) 509-51945.H. K. Tonshoff, R. Telle and P. Roth, "Chip Formation and Material Removal in Grinding of Ceramics," S.M.E. Report, No. MR90-539 (1990)46.海野邦昭, “ファインセラミックスの高能率機械加工,” 日刊工業新聞社, (1986), pp. 102-10547.竹內惠三, 河端則次, “超砥粒ホイ-ルによる加工の最新動向,” 機械と工具, 1996年7月, pp. 32-3948.貴志浩三, 市田良夫, “ファインセラミックスの鏡面研磨,” 機械と工具, 1989年2月, pp. 65-6949.伊田正治, 奧田博, “ファインセラミックスの機械加工,” 材料科學, 1982年5月, pp. 26-3150.X. Li, “A free-abrasive machining approach to dressing of resin-bonded CBN grinding wheels,” J. Mater. Proc. Tech. 48 (1995) 223-230 51.H. Miyasato, H. Okamoto, S. I. Usui, A. Miyamoto, and Y. Ueno, “The effect of grinding on strength of hot-pressed silicon nitride,” ISIJ Inter., 29 [9] 726-733 (1989)52.H. H. K. Xu, S. Jahanmir, and L. K. Ires, “Material removal and damage formation mechanism in grinding silicon nitride,” J. Mater. Res., 11 [7] 1717-1724 (1996)53.由井明紀, 北住順一, 渡部武弘, 吉田嘉太郎, “研削加工條件がセラミックスの強度に及ぼす影響,” 日本機械學會論文集C, 57 [537] 1743-1748 (1991)54.M. Ohta, K. Miyahara and K. Matsuo, “Effect of grinding parameters on the strength of ceramics,” J. Jpn. Soc. Precis. Engr. (1987) pp. 75355.O. Desa and S. Bahadur, “ The effect of lubricants in single point scratching and abrasive machining of alumina and silicon nitride ,” Wear, 251 (2001) 1085-109356.小田喜敏美, 重松康秀, 重松日出見, 富田進, “セラミックスの鏡面仕上に關する研究-レジノイドボンドの酸化クロム砥石による窒化ケイ素の超仕上面に及ぼす加工液の影響,” 日本機械學會論文集C, 60 [574] 2159-2163 (1994)57.Hannover, E. B., J. T. C. Cincinnati, W. Konig, P. Leskovar, and H. K. Tonshoff, “ Residual stresses-measurement and causes in machining processes,” Annals of the CIRP, 31 [2] 491-510 (1982)58.本間恭二, 吉澤俊司, 金子克己, “セラミックスの加工面の評價-表面傷が強度に及ぼす影響,” 日本機械學會論文集C, 59 [558] 569-574 (1993)59.阪井田喜久, 田中啟介, 河本洋, “研削されたセラミックスの保證試驗後の曲げ強度,” 日本機械學會論文集A, 64 [623] 1943-1949 (1998)60.Fischer, A. C. and B. R. Lawn, “ Stress analysis of contact deformation in quasi-plastic ceramic,” J. Am. Ceram. Soc., 79 [10] 2609-2618 (1996)61.貴志浩三, 市田良夫, “AFMによる窒化ケイ素超精密研削表面のナノトポグラフィ,” 精密工學會誌, 58 [9] 1569-1574 (1992)62.T. W. Liao, K. Li, S. B. McSpudder, Jr. and L. J. O’Rourke, “Wear of diamond wheel in creep-feed grinding of ceramic materials I: Mechanism,” Wear, 211 (1997) 94-10363.K. Li, T. W. Liao, L. J. O’Rourke, and S. B. McSpudder, Jr., “Wear of diamond wheel in creep-feed grinding of ceramic materials II: Effect on process and strength,” Wear, 211 (1997) 104-11264.楊春欽, “磨潤學的定義與範疇,” 磨潤學原理與應用, 科技圖書出版 (1986) pp. 1-965.J. Xu and K. Kato, “Formation of tribochemical layer of ceramics sliding in water and its role for low friction,” Wear, 245 (200) 61-75 66.P. Cong, N. Kashihara, J. Imai, and S. Mori, “Effects of sliding speed on tribological behaviors and tribochemical reactions of alumina in HFC-134a gas,” Wear, 247 (2000) 202-207 67.中尾博, 福西利夫, “ダイヤモンド砥石によるファインセラミックスの加工,” 機械と工具, 1985年4月, pp. 59-63
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top