跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊名
研究生(外文):Jiun-Ming Chen
論文名稱:非消耗性鎢極電弧銲覆鈦鎳介金屬之沖蝕性研究
論文名稱(外文):Erosion Behavior of Gas Tungsten Arc Welded TiNi Intermetallic Overlay
指導教授:陳克昌陳克昌引用關係
指導教授(外文):Keh-Chang Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:119
中文關鍵詞:鈦鎳介金屬非消耗性鎢極銲覆法氣固混合撞擊沖蝕窩蝕直流極化
外文關鍵詞:CavitationTiNi intermetallicDC polarizationGas tungsten arc weldingSolid particle impactingErosion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

鈦鎳介金屬的擬彈性行為,在塊材方面的研究資料顯示具有良好的沖蝕及窩蝕抵抗能力,然而諸多競相提出的表面工程手段中,若能以硬面處理的方式將TiNi介金屬被覆於物體表面,不但設備成本極低,並可藉以減少高單價鈦鎳介金屬的使用,不失為一值得探討的主題。研究中即以非消耗性鎢極銲覆(GTAW)TiNi介金屬於S45C中碳鋼及SUS 304不□鋼上,所使用的銲材合金成分為Ti50Ni50,銲覆時藉由改變銲接電流以得到不同結構的TiNi銲覆層,並探討銲覆層在氣固混合撞擊沖蝕及不同溶液環境下窩蝕之行為。
實驗結果顯示:在使用高電流值130 A進行銲覆時,因入熱量太大,所產生的銲接殘留應力造成在不□鋼上的銲覆層表面龜裂,以致於在高電流參數下所得的TiNi銲覆層無法進行後續之研究。在低電流值85 A下銲覆所得的TiNi銲覆層,其金相顯微組織為常見的銲後樹枝狀結構。銲覆層結構經XRD分析,SUS 304之TiNi銲覆層大致為TiNi-B2、TiNi-B19’、TiNi3及Ti3Ni4相,S45C之TiNi銲覆層大致為TiNi-B2和TiNi3相。
基材和TiNi銲覆層在45m/s氣固混合撞擊沖蝕下,兩種TiNi銲覆層無論於何種沖蝕角度下,其質量損失均比基材大,並不抗沖蝕破壞。其原因可能是TiNi銲覆層之元素成分的改變,以致於失去擬彈性的特性,且銲覆組織因微觀的樹枝狀偏析加速了銲覆層的質量流失,造成無法如預期藉其擬彈性來提高抗沖蝕性。從TiNi銲覆層在不同沖擊角度下的沖蝕速率得知,TiNi銲覆層的沖蝕速率隨著沖擊角度的增加而遞增,顯示利用銲覆所得的TiNi銲覆層呈現的是脆性材料特質。由沖蝕前後的XRD繞射圖發現,銲覆層的繞射峰並無明顯的改變,僅因在沖蝕的作用力下使得晶格產生變形,顯示銲覆層在沖蝕的過程中並無利用所謂的麻田散體相變態或擬彈性行為來調適。經銲後熱處理的銲覆層藉由內應力及若干缺陷的消除,降低了TiNi銲覆層的沖蝕速率,但對於消除偏析組織則無效果。
窩蝕試驗採用ASTM G32-92 之標準試驗法分別在純水、3.5 wt% NaCl及3.5 wt% HCl水溶液中進行。實驗結果顯示,無論是在純水、3.5 wt% NaCl及3.5 wt% HCl水溶液中,TiNi銲覆層均能抑制窩蝕的損失。從窩蝕前後的XRD繞射圖得知,其過程中並無發生任何的相變化,因此TiNi銲覆層優越的抗窩蝕能力乃因本身的高硬度所使然。從直流極化試驗結果顯示TiNi銲覆層在3.5 wt% NaCl及3.5 wt% HCl水溶液環境中因其腐蝕電位高於及腐蝕電流低於基材,造成抗窩蝕的加成效果。


The pseudoelasticity of TiNi intermetallic alloy provides excellent fatigue resistance and cavitation erosion resistance. A variety of surface engineering processes have been proposed using TiNi coating to reduce damage of erosion. It may be a good idea that using the hardfacing process to yield TiNi intermetallic overlay to protect the commonly used materials with a low cost. Gas tungsten arc welding (GTAW) was chosen to yield an overlay by using Ti50Ni50 intermetallic onto SUS 304 stainless steel and JIS S45C medium carbon steel, and structure of TiNi overlay is manipulated by welding current. Solid/gas impingement and cavitation in different solutions were carried out to explore the erosion behavior of the overlay.
Experimental results show that using higher current (130 A) produces a larger heat input and residual stress to make the as-welded TiNi overlay on SUS 304 cracked. Because of this, a proper welding current 85A was determined and microstructure of the weld overlay was characterized. It shows a common as-welded dendrite structure. The X-ray diffraction pattern shows that the as-welded overlay on SUS 304 was approximately TiNi-B2, TiNi-B19’, TiNi3 and Ti3Ni4 phases, while it was TiNi-B2 and TiNi3 phase on S45C.
Solid particle impact test was carried out to explore the erosion behavior of the overlay. Substrates and TiNi overlays impacted at 45 m/s shows that all the overlay mass loss were higher than bare substrates at any impact angle indicating a poorer resistance to erosion damage, due to the composition of TiNi overlay was changed lead to lose the behavior of pseudoelasticity, and the dendrite structure. TiNi overlay’s erosion rate was increased with increasing impact angle revealing that the TiNi overlay presents a behavior of brittle material. The XRD diffraction patterns after erosion test suggest a lattice distortion without any phase change by the so called pseudoelasticity. A post heat treatment for the TiNi overlay can reduce internal stress and increase toughness to improve the TiNi overlay erosion resistance. This, however, is helpless to eliminate dendrite structure.
Cavitation resistance was evaluated using the ASTM G32-92 standard test in fresh water, 3.5 wt% NaCl water solution and 3.5 wt% HCl water solution. Experimental results show that TiNi overlay in the three solutions significantly increase cavitation resistance. Again, the overlay XRD diffraction patterns after cavitation test suggest a lattice distortion without any phase change. The excellent cavitation resistance due primarily to the higher hardness of the overlay itself. The DC polarization behaviors of TiNi overlay were measured to explore the electrochemical behavior in corrosion environments. It shows that the TiNi overlay in both 3.5 wt% NaCl solution and 3.5 wt% HCl solution exhibit higher corrosion potential and lower corrosion current than the bare substrates. This brings a positive effect to the cavitation resistance.


中文摘要I
英文摘要III
總目錄V
圖目錄VII
表目錄XIII
第一章 前言1
第二章 文獻回顧3
2.1 材料的沖蝕損壞模式3
2.1.1 固體沖蝕行為3
2.1.2 窩蝕10
2.2 硬面處理合金在沖蝕環境之選擇15
2.2.1 硬面合金被覆材15
2.2.2 介金屬被覆材18
2.3 TiNi形狀記憶合金的特性21
2.3.1 形狀記憶效應24
2.3.2 擬彈性29
2.4 硬面處理技術在沖蝕行為的應用32
2.4.1 非熔融硬面法33
2.4.2 熔融硬面法36
2.5 TiNi合金在硬面銲覆的應用37
第三章 實驗步驟與方法40
3.1 TiNi線材之製備41
3.2 試片準備41
3.3 銲覆基材41
3.3.1 銲覆電流值的選用42
3.3.2 研磨整平45
3.4 沖蝕試驗與窩蝕試驗46
3.4.1 沖蝕試驗46
3.4.2 窩蝕試驗49
3.5 硬度值量測52
3.6 X-Ray繞射分析52
3.7 顯微組織觀察52
3.8 銲道成分分析52
3.9 直流極化試驗53
第四章 結果與討論54
4.1 銲覆電流對銲覆層的影響54
4.2 銲覆層顯微組織觀察55
4.2.1 銲覆層金相組織觀察55
4.2.2 銲覆層成分分佈分析59
4.3 銲覆層結晶結構65
4.4 銲覆層之硬度66
4.5 銲覆層之乾砂撞擊冲蝕行為67
4.6 熱處理對銲覆層沖蝕速率的影響86
4.7 銲覆層之窩蝕行為92
4.8 銲覆層的直流極化行為108
第五章 結論111
文獻參考113


1.J. Vikstrom, “Galling Resistance of Hardfacing Alloys Replacing Stellite”, Wear, 179 (1994) 143-146.2.M. Scholl, R. Devanathan and P. Clayton, “Abrasive and Dry Sliding Wear Resistance of Fe-Mo-Ni-Si and Fe-Mo-Ni-Si-C Weld Hardfacing Alloys”, Wear, 135 (1990) 355-368.3.T. Tomita, Y. Takatani, Genzo Hashizume and Yoshio Harada, “Sliding Wear Characteristics of Ni-Cr-Fe Overlay Weld Alloy with Dispersed NbC Particles”, Materials Transactions, JIM, 32 (1991) 237-243.4.B. V. Cockeram, R. F. Buck and W. L. Wilson, “Laboratory Galling Tests of Several Commercial Cobalt-Free Weld Hardfacing Alloys”, Surface and Coatings Technology, 94-95 (1997) 495-500.5.J. H. Song and H. J. Kim, “Sliding Wear Performance of Cobalt-based Alloys in Molten-Al-Added Zinc Bath”, Wear, 210 (1997) 291-298.6.R. Dasgupta, B. K. Prasad, A. K. Jha, O. P. Modi, S. Das and A. H. Yegneswaran, “Wear Characteristics of a Hardfaced Steel in Slurry”, Wear, 209 (1997) 255-262.7.J. N. Aoh, Y. R. Jeng, E. L. Chu and L. T. Wu, “On the Wear Behavior of Surface Clad Layers under High Temperature”, Wear, 255-229 (1999) 1114-1122.8.H. Berns and A. Fischer, “Microstructure of Fe-Cr-C Hardfacing Alloys with Additions of Nb, Ti and B”, Previously Published in Metallography 20, (1987) 401-429.9.R. L. Deuis, C. Subramanian and J. M. Yellup, “Three-Body Abrasive Wear of Composite Coatings in Dry and Wet environments”, Wear, 214 (1998) 112-130.10.H. L. Tsai and H. S. Lin, “The CO2 Laser Hardfacing of Mold Steel”, Journal of Materials Processing Technology 56 (1996) 66-69.11.Y. L. Su and K. Y. Chen, “The Influence of Niobium, Chromium, Molybdenum and Carbon on the Sliding Wear Behavior of Nickel-Base Hardfacing Alloys”, Wear, 209 (1997) 160-170.12.D. Y. Li, “A New Type of Wear-Resistant Material: Pseudo-Elastic TiNi Alloy”, Wear, 221 (1998) 116-123.13.C. H. Yeh, H. C. Lin, K. M. Lin, J. L. He and C. H. Yang, “A study of Cavitation Erosion Characteristics of TiNi Shape Memory Alloys”, Journal of Feng Chia University, 36 (1999) 125-130.14.K. G. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, Inc., New York, (1988) 24-28.15.I. Finnie, “Erosion of Surface by Solid Particle”, Wear, 3 (1960) 87-103.16.Peter J. Blau, “Fifty Years of Research on Wear of Metals”, Tribology International, 30 (1997) 321-331.17.R. Bellman and A. Lery, “Erosion Mechanism in Ductile Metals”, Wear, 70 (1981) 1-27.18.K. Z. Gahr, Microstructure and Wear of Material, Tribology Series 10, Elserier Science Publishing Company, Inc., (1987).19.S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed., Mcgraw-Hill, New York, (1951).20.K. G. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, Inc., New York, (1988) 22-23.21.K. Wellilnger and H. Uetz, Material Purf., 9 (1967) 153-160.22.A. W. Ruff., Materials Science and Technology, 16(1979).23.S. S. Aptehar, “Erosion of white cast iron and stellite”, Wear of Materials. ASME, New York, (1985) 677-686.24.R. Richardson, Wear, 10 (1967) 291.25.B. Byas and C. M. Preece, “Stress Produced in a Solid by Cavitation”, Journal of Applied Physics, 47 (1976) 5133-5138.26.R. F. Patella and J. L. Reboud, “A. New Approach to Evaluate the Cavitation Erosion power”, Journal of Fluids Engineering, 120 (1998) 335.27.M. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw-Hill Book Company, New York, (1978) 84.28.劉君祖,牛頓現代科技大百科,第13冊-物理科學(I)-物理篇,牛頓出版股份有限公司,(1989) 24。29.K. G. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, Inc., New York, (1988) 24.30.J. G. Auret, O. F. R. A. Damm, G. J. Wright, and F. P. A. Robinson, “Cavitation Erosion of Copper and Aluminum in Water at Elevated Temperature”, Tribology International, 26 (1993) 421-429.31.M. G. Fontana and N. D. Greene, “Corrosion Engineering”, McGraw-Hill Book Company, New York, (1978) 85.32.程金保,〝電漿電弧銲接金屬之硬面處理〞,表面技術雜誌,第141期,80-85頁。33.J. N. Aoh and J. C. Chen, “On the Wear Characteristics of Cobalt-based Hardfacing Layer after Thermal Fatigue and Oxidation”, Wear, 250 (2001) 611-620.34.K. Sang and Y. Li, “Cavitation Erosion of Flame Spray Weld Coating of Nickel-based Alloy Powder”, Wear, 189 (1995) 20-24.35.C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion of Duplex and Super Duplex Stainless Steels”, Scripta Materialia, 39 (1998) 1229-1236.36.S. C. Chang, W. H. Weng, H. C. Chen, S. J. Lin and P. C. K. Chung, “The Cavitation Erosion of Fe-Mn-Al alloys”, Wear, 181-183 (1995) 511-515.37.G. B. Jiang, Y. L. Zheng, Y. Y. Yang and H. S. Fang, “Cavitation Erosion of Bainitic Steel”, Wear, 215 (1998) 46-53.38.S. Dallaire, D. Dubé and M. Fiset, “Laser Melting of Plasma-Sprayed Copper-Ceramic Coatings for Improved Erosion Resistance”, Wear, 231 (1999) 102-107.39.R.H. Richman, A.S. Rao and D. Kung, “Cavitation erosion of two NiTi alloys”, Wear, 157 (1992) 401-407.40.L. Delaet, R. V. Krishnan, H. Tas and H. Warlimont, Journal Materials Science, 9 (1974) 1521.41.R. V. Krishnan, L. Delaey, H. tas and H. Warlimont, Journal Materials Science, 9 (1974) 1536.42.H. Warlimont, L. Delaet, R. V. Krishnan and H. Tas, Journal Materials Science, 9 (1974) 1545.43.K. Otsuka and K. Shimizu, “Pseudoelasticity and shape memory effects in alloys”, International Metals Review, 31 (1986) 93.44.A. P. Jardine, K. H. G. Ashbee and M. J. Bassett, “Effects of cooling rate on the shape memory effect thermodynamics of NiTi”, Journal Materials Science, 23 (1988) 4273-4281.45.P. Clayton, “Tribological Behavior of a Titanium-Nickel Alloy”, Wear, 162-164 (1993) 202.46.Y. Shida and Y. Sugimoto, “Water Jet Erosion Behavior of Ti-Ni Binary Alloy”, Wear, 146 (1991) 219-228.47.Y. Suzuki and T. Kurgyanagi, Titanium Zirconium, 27 (1979) 67.48.R. H. Richman, A. S. Rao and d. Kung, “Cavitation Erosion of NiTi Explosively Welded to Steel”, Wear, 181-183 (1995) 80-85.49.A. P. Jardine, Y. Field and H. Herman, J. Matre. ci. Lett., 10 (1991) 943.50.A. P. Jardine, Y Field, H. Herman, D. R. Marantz and K. A. Kowalsky, Scripta Met. Mater., 24 (1990) 2341.51.K. S. Zhou, D. Z. Wang and M. Liu, “A study of the Cavitation Erosion Behavior of a Ti-Ni Alloy Coating”, Surface and Coating Technology, 34 (1987) 79-87.52.H. Hiraga, T. Inoue, H. Shimura and A. Matsunawa, “Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hynrid Spraying”, Wear, 231 (1999) 272-278.53.R. N. Wright, “Cavitation Erosion and Abrasive Wear of Ni3Al Alloys”, Intermetallics, 3 (1995) 389-396.54.J.A. Hearley, J.A. Little and A.J. Sturgeon, “The Erosion Behaviour of NiAl Intermetallic Coatings Produced by High Velocity Oxy-Fuel Thermal Spraying”, Wear, 233-235 (1999) 328-333.55.S. Miyazaki and K. Otsuka “Development of Shape Memory Alloys”, ISU International, 29 (1989) 353-377.56.李芝媛、吳錫侃譯,"淺談形狀記憶合金",科儀新知,16,6 (1995) 6。57.劉秀琴,"低溫用形狀記憶合金",工業材料,34,11 (1989)。58.E. Quandt, C. Halene, H. Holleck, K. Feit and M. Kohl, “Sputter Deposition of TiNi, TiNiPd and TiPd films Displaying the Two-way Shape-memory Effect”, Sensors and Actuators, A53 (1996) 434-439.59.H. Tobushi, K. Tanaka, and T. Hori, “Pseudoelasticity of TiNi Shape Memory Alloy”, JSME International Journal, Series A, 36. 3. (1993) 314-318.60.K. G. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, Inc., New York, (1988) 210-212.61.C. T. Kwok, F. T. Cheng and H. C. Man, “Laser Surface Modification of UNS S31603 Stainless Steel Using NiCrSiB Alloy for Enhancing Cavitation Erosion Resistance”, Surface and Coatings Technology, 107 (1998) 31-40.62.C. T. Kwok, H. C. Man and F. T. Cheng, “Cavitation Erosion-Corrosion Behaviour of Laser Surface Alloyed AISI 1050 Mild Steel Using NiCrSiB”, Materials Science and Engineering, A303 (2001) 250-261.63.C. T. Kwok, F. T. Cheng and H. C. Man, “Laser-fabricated Fe-Ni-Co-Cr-B Austenitic Alloy on Steels. Part II. Corrosion Behaviour and Corrosion-Eroison Synergism”, Surface and Coatings Technology, 145 (2001) 206-214.64.H. M. Hawthorne, B. Arsenault, J. P. Immarigeon, J. G. Legoux and V. R. Parameswaran, “Comparison of Slurry and Dry Erosion Behaviour of Some HVOF Thermal Sprayed Coatings”, Wear, 225-229 (1999) 825-834.65.吳建德、鍾長祥、吳柏成、謝運華、王家瓚、彭煃政,〝高速火焰熔射塗層窩蝕特性〞,中國材料科學學會1993年年會論文集,(1993) 8-27。66.K. S. Zhou, D. Z. Wang and M. Liu, “A study of Ni-Ti Alloy Coating and Its Behavior on Cavitation Erosion”, Thermal Spray Adv. Coat. Technol., (1988) 167-174.67.H. Hiraga, T. Inoue, A. Matsunawa, H. Shimura, “Effect of Laser Irradiation Conduction on Bonding Strength and in Laser Plasma Hybrid Spraying”, Surface and coatings technology, 138 (2001) 284-290.68.B. F. Levin, J. N. DuPont and A. R. Marder, “Weld Overlay Coatings for Erosion Control”, Wear, 181-183 (1995) 810-820.69.H. J. Kim, S. Grossi and Y. G. Kweon, “Wear Performance of Metamorphic Alloy Coatings”, Wear, 232 (1999) 51-60.70.A. N. J. Stevenson, I. M. Hutchings, “Wear of Hardfacing White Cast Irons by Solid Particle Erosion”, Wear, 186-187 (1995) 150-158.71.何奇律、王逸萍、沈宏俊,〝表面處理技術在設備維護上的應用〞,化工技術,5,12 (1997) 140-146。72.何主亮、陳克昌、簡淑梅、陳正銓,〝陰極放電被覆薄膜及其機械性質〞,中國材料科學學會1997年年會論文集,(D)介金屬化合物,(1997) 21-24。73.何主亮、陳克昌、林新智、張景棠、翁克偉,〝陰極電弧放電被覆薄膜之抗穴蝕性質〞,中國材料科學學會1998年年會論文集,(D)腐蝕與防蝕,(1998) 5-8.74.J. L. He, K. W. Won, C. T. Chang, K. C. Chen and H. C. Lin, “Cavitation-resistant TiNi Films Deposited by Using Cathodic Arc Plasma Ion Plating”, Wear, 233-235 (1999) 104-110.75.何主亮,〝第九屆沖蝕及研磨磨耗國際研討會-出席國際會議〞,科學發展月刊,27,3 (1999) 338-341.76.J. L. He, K. W. Won and J. T. Chang, “TiNi Thin Films Prepared by Cathodic Arc Plasma Ion Plating”, Thin Solid Films, 359 (2000) 46-54.77.A.W. Ruff and L. K. Ives, Wear, 35 (1975) 195-199.78.Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM Standard, G32-92, 1992.79.G. P. Tilloy and W. Sage, Wear, 16 (1970) 447-465.80.G. P. Tilloy, Wear, 14 (1969) 63-79.81.J. H. Neilson and A. Gilchrist, Wear, 11 (1968) 111-122.82.E. Raask, Wear, 13 (1969) 301-305.83.W. J. Tomlinson, A. S. Bransden, “Cavitation Erosion of Laser Surface Alloyed Coating on Al-12%Si”, Wear, 185 (1995) 59-65.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蘇正芬(1997)。互動式遠距教學:環境與教學。遠距教育,第4期,頁27-32。
2. 鐘樹椽(1993)。互動性在電腦輔助教學設計上之必要性。教學科技與媒體 ,第12期 ,頁15-20。
3. 蘇正芬(1997)。遠距教學在交大。遠距教育,第1期。
4. 顏榮泉(1996)。全球資訊網在教學與學習上之應用探討。教學科技與媒體,第25期。頁33-41。
5. 高熏芳(1993)。以統整的觀點看科技創新在教育上的實施。教學科技與媒體,第9期,頁39-44。
6. 鄭安佑、陳韋宏、羅光宏、謝文雄、陳信良(1997)。課程隨選系統設計。遠距教育,第2期,頁40-46。
7. 謝進生(1996)。認識WWW及在教學上的應用研究。教師天地,第83期,頁60-63。
8. 趙美聲、黃仁竑(1997)。寬頻網路即時群播之實例探討-談中正大學先導系統之研究與推廣。資訊與教育,58期,頁30-38。
9. 劉寶鈞(1997)。中央大學虛擬教室簡介。遠距教育,第1期,頁15-16。
10. 馬難先(1997)。我國NII計畫推動遠距教學現況與未來發展。遠距教育,第1期,頁7-10。
11. 楊叔卿、費而隱(1998)。同步視訊互動式遠距教學課程實施之研究。遠距教育,第8期,頁25-30。
12. 劉明洲(1998)。遠距教學之建置與效益評估。資訊與教育,第65期,頁31-38。
13. 楊家興(1996)。透視國家資訊基礎建設下的隔空教學(上)。教學科技與媒體,第25期,頁50-57。
14. 梁朝雲(1997)。即時群播遠距教學的省思-元智試辦遠距教學現況檢討。遠距教育,第4期,頁7-11。
15. 孫春在(1997)。遠距教學策略:遠距合作設計簡介。遠距教育,第3期,頁6-10。