跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林彥瑋
研究生(外文):Yen-Wei Lin
論文名稱:Ta-Co-N三元合金薄膜作為銅製程之擴散阻礙與催化層之可行性研究
論文名稱(外文):A feasibility study of using Ta-Co-N ternary thin film as diffusion-barrier and catalytic layers for copper processing
指導教授:陳錦山
指導教授(外文):GSChen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:96
中文關鍵詞:林彥瑋阻礙催化
外文關鍵詞:CoYWLinTacatalyticbarrier
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究利用反應性濺鍍製程,在不同的N2/Ar分壓比例氣氛,將鈷(Co)與不同計量比之鈷基化合物(Co-N)薄膜沈積在未加熱(通稱室溫)和高溫現場加熱300 ℃之(100)矽晶基材上,並利用X光繞射分析、電阻率量測、穿透式電子顯微術(TEM)及高解析掃瞄電子顯微分析術(SEM)觀察這些薄膜的電導性、微結構與相的轉變。隨著N2/Ar分壓比例的增加,於未加熱(室溫)矽晶基材可依序沈積以下物質:六方最密堆積結構(a-Co)、面心立方(Co4N)為主並混合a-Co、斜方晶(Co2N)、面心立方(CoN)為主並混以少量Co2N;在與室溫沈積相同之N2/Ar之分壓條件下,300 ℃現場濺鍍Co-N化合物薄膜之計量比也會隨N2增加而增加(即由a-Co最終變化至CoN),其相轉變依序如下:a-Co、六方堆積Co3N為主混合面心立方β-Co、Co2N為主混合β-Co、CoN為主混合Co2N及β-Co(其中,Co3N與β-Co乃分別由Co4N Co3N+β-Co與Co2N CoN+β-Co兩個熱分解反應所產生)。上述薄膜物質的電阻率及顯微結構均有所差異,其中,電阻率值介於200至900 mW-cm(視基板加熱與否、Co-N薄膜之N計量比而定);傳統θ-2θXRD僅顯現少數且微弱的波峰,故無法有效鑑定材料之晶質性與相之種類,而TEM擇區繞射圖譜則證實以上的相轉變、熱分解效應及Co-N結晶性與晶粒尺寸變化。N2分壓之增加會造成晶粒細化。
為了進一步了解Co-N薄膜之高溫熱分解之相轉變行為,我們將三組300 ℃現場沈積試片(其相分別以Co3N、Co2N 與CoN為主),進行400 -700 ℃恆溫處理5分鐘後,掠角XRD圖譜分析顯示:這三種薄膜會進行相似的高溫相轉變行為,並於700 ℃熱處理後形成相同的物質,TEM分析證實這些物質為CoN與β-Co。這結果顯示顯示,Co3N與Co2N熱分解為CoN與β-Co。本研究亦對其作銅之高溫擴散阻礙性能分析並利用整體片電阻電性量測、掠角X光繞射、掃瞄式電子顯微分析,其結果顯示:升高溫度依序導致銅晶粒成長與Cu3Si四角錐粒子析出,而且,此三組試片結構電性崩潰溫度均在500 ℃左右, Co3N 、Co2N 與CoN阻礙性能不相上下之原因應該是高溫誘發熱分解所造成。
我們並進一步探討Co4N、Co4N/Co2N與Co2N(室溫沈積)薄膜對無電鍍銅的催化效果。這三種薄膜均可以催化無電鍍銅。Co4N催化表面可以沈積附著性良好且完整一致之銅膜。Co2N雖具有催化效果,但與銅膜之附著性不好,故銅膜容易產生剝離。最後,本研究將取Co-N催化與Ta-N阻礙性能之優點,擬試製Ta-Co二元與Ta-Co-N三元合金薄膜,以進行銅製程之擴散阻礙與催化層之可行性研究。
Abstract
Thin film of Co and Co-N were sputter deposited at different nitrogen / argon gas pressure ratios on (100) silicon substrates which did not heat (room temperature) and heat with 300 ℃. The properties of these films, particularly electric conductivity, microstructure and phase transition were explored using x-ray diffractometry (XRD), electric resistance measurement, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). On the unheated substrates, we can deposit: HCP (a-Co), FCC (Co4N) and mix with few a-Co, orthorhombic (Co2N), FCC (CoN) and mix with few Co2N along with the increase nitrogen/argon gas pressure ratios. In the same pressure condition but heating with 300 ℃, we can deposit: HCP (a-Co), HCP(Co3N) and mix with few FCC(β-Co), Co2N and mix with fewβ-Co, CoN and mix with few Co2N andβ-Co (in which, Co3N and β-Co are thermal decomposition with two reaction which are Co4N Co3N + β-Co and Co2N CoN +β-Co). Electric resistivities and microstructure of thin films are difference, among them electric resistivities lie in between 200 to 900 mW-cm (It is dependent on substrate heating or not heating and the nitrogen concentrations of stoichiometry). The traditional XRD showed a few and weak diffraction pattern, so could not identify the crystal structure or the kind of the phase. We can prove the phase transition, thermal decomposition reaction and the change of grain size with the TEM Selected-area diffraction pattern. The increasing of the nitrogen pressure would cause grain refinement.
In order to understand the phase transition of thermal decomposition reaction. We annealed Co3N, Co2N and CoN which deposited with 300 ℃ under high temperature range (400-700 ℃) and were analyzed by using grazing incident XRD. It showed that they have the similar phase transition and the same material under 700 ℃. They were CoN andβ-Co that formed by thermal decomposition from Co3N and Co2N. Additionally, the use 20 nm-thick Co3N, Co2N and CoN thin film as diffusion barriers between silicon and copper were evaluated by sheet resistance measurement, grazing incident XRD and SEM to examine Si/Co-N/Cu sample after annealing under high temperature range (350-600 ℃). Result, based on sheet resistance measurement, grazing incident XRD and SEM, showed that the three samples yield a threshold temperature for electrical failure and the formation of Cu3Si at 500 ℃. The situation should be cased by the thermal decomposition.
Thin films of Co4N, Co4N/Co2N and Co2N all could catalyze copper. Co4N surface could deposit a good adhesion and complete copper film. Although Co2N have catalytic ability, it had poor adhesion with copper film and peel off easily. Finally, We will take the catalytic capability of Co-N and the against diffusion of Ta-N, intend to manufacture the Ta-Co and Ta-Co-N alloy thin film that could be as diffusion-barrier and catalytic layers for copper processing.
目 錄
中文摘要Ⅰ
AbstractⅢ
目錄Ⅴ
圖目錄Ⅶ
表目錄ⅩⅢ
第一章、前言1
第二章、研究背景7
2.1 大馬士革7
2.2 IC積體電路無電鍍銅8
2.3 銅內連接導線之擴散阻礙層11
2.4 Co-N薄膜文獻回顧15
2.5 研究動機、研究主題16
第三章、實驗流程與試片分析31
3.1 實驗步驟31
3.2 Co-N薄膜特性分析33
3.3 擴散阻礙性能評估34
3.4 催化特性分析35
第四章、反應性濺鍍鈷基氮化物薄膜相轉變41
4.1室溫濺鍍沈積Co-N薄膜特性41
4.1.1 電性與沈積速率量測41
4.1.2 SEM微結構分析41
4.1.3 XRD分析43
4.1.4 TEM分析44
4.2 300 ℃沈積之Co-N薄膜特性48
4.2.1 電性與沈積速率量測48
4.2.2 SEM微結構分析48
4.2.3 XRD分析49
4.2.4 TEM分析50
4.3 不同溫度熱處理之Co-N薄膜特性52
第五章、Si/Co-N/Cu擴散層擴散阻礙與Si/Ta-Co(N)無電鍍銅催化78
5.1 Si/Co-N/Cu擴散層擴散阻礙層性質分析78
5.2 Si/Ta-Co(N)無電鍍銅催化83
第六章、結論92
參考文獻94
Reference1.S. P. Murarka, Mater. Sci. Eng., R19, 87 (1997).2.Semiconductor Industry Association, San Jose, CA (1994).3.X. W. Lin and D. Pramanik, Solid State Technol., 41, 63 (1998).4.Hajime Yoshiki, Hiromitsu Kitahara, Kazuhito Hashimoto, and Akira Fujishima, “Pattern Formation of Cu Layer by Photocatalytic Reaction of ZnO Thin Film”, J. Electrochem. Soc., 142, L235(1995)5.Jun-Ying Zhang, Ian W. Boyd, “Excimer lamp-induced decomposition of platium acetylacetonate films for electroless copper plating”, Solid-State Electronics.,43(1999)6.X. Sun, E. Kolawa, J. S. Chen, J. S. Reid and M.-A. Nicolet, Thin Solid Films, 236, 347(1993).7.K. H. Min, K. C. Chun and K. B. Kim, J. Vac. Sci. Technol. B, 14, 3263(1996).8.L. Velo, A. Paranjpe, M. Moslehi, G. Shuang, T. Omstead, Z. Liu, R. Bubber, C. David, D. Campbell, B. Relja, Proc. 15th Inter. VLSI Multilevel Interconnection Conf., Santa Clara, CA, USA, June 16-18, 1998 (in 98 ISMIC-108, 69).9.J. Torres, J. Palleau, P. Motte, F. Tardif, H.Bernard, G. Passmard, Proc. 15th Inter VLSI, Multilevel Interconnection Conf., Santa Clara, CA, USA, June 16-18, 1998 (in 98 ISMIC-108, 83).10.T. Osaka, H. Takematsu and K. Nihei, ibid. 127, 1021(1980).11.M. H. Kiang, M. A. Lieberman, N. W. Cheung and X. Y. Qian, Appl. Phys. Lett., 22, 2767(1992).12.T. H. Baum, J. Electrochem. Soc., 137, 252(1991).13.R. L. Jackson, J. Electrochem. Soc., 135, 3172(1989).14.P. L. Pai and C. H. Ting, Electron Device Letters, 9, 423(1989).15.Y. Shacham-Diamand, J. Micromech. Microeng., 1, 66(1992).16.C. Y. Mak, MRS Bulletin, August, 55 (1994).17.S. M. Sze, “VLSI Technology 2nd”, McGraw-Hill Book Company, New York , USA (1988).18.E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M.-A. Nicolet, ‘Tantalum-based diffusion barriers in Si/Cu VLSI metallizations,’ J. Appl. Phys., 70, 1369 (1991).19.J. C. Chiou, H. I. Wang and M. C. Chen, J. Electrochem. Soc., 143, 990 (1996).20.M. -A. Nicolet, Thin Solid Films, 52, 415 (1978).21.M. Stavrev, D. Fischer, F. Praessler, C. Wenzel, and K. Descher, J. Vac. Sci. Technol. A, 17(3), 993 (1999).22.T. Yamauchi and T. Yamaoka, J. Appl. Phys., 78(4), 2385 (1995).23.L. Hultman, S. Benhenda, G. Radnoczi and J. E. Sundgren, Thin Solid Films, 215, 152 (1992).24.J. S. Reid, X. Sun, E. Kolawa and M.-A. Nicolet, IEEE Electron Device Letters, 15, 29 (1994).25.M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu, C. E. Tsai, S. H. Chuang and S. C. Wu, Thin Solid Films, 270, 531 (1995).26.M. Paunovic, P. J. Bailey, R. G. Schad and D. A. Smith, J. Electrochem. Soc., 141, p1843(1994).27.J. O’Sullivan, A. G. Schrott, M. Paunovic, C. J. Sambucetti, J. R. Marion, P. J. Bailey, S. Kaja, and K. W. Semkow, IBM J. Res. Develop., 42, p607(1998).28.Y. Shacham-Diamand, and S. Lopatin, Electrochimica Acta, 44, p3639(1999).29.Kohn, M. Eizenberg, Y. Shacham-Diamand, Y. Sverdlov, Materials Science and Engineering, A302, p18(2001).30.Y. Shacham-Diamand, Y. Sverdlov, Microelectronic Enginering, 50, p525(2001).31.K. Oda, T. Yoshio, K. Oda, J. Mater. Sci. 22, 2729 (1987).32.K. Suzuki, T. Kaneko, H. Yoshida, H. Morita, H. Fujimori, J. Alloys Comp. 224, 232(1995).33.L. Maya, M. Paranthaman, J. R. Thompson, T. Thundat, R. J. Stevenson, J. Appl. Phys. 79(10), 7905(1996).34.陳松德、黃獻慶、林裕鑫、徐廣福、陳錦山、陳慶洪, 積體電路元件銅內連接導線製程之演進, 真空科技, 11(3-4), 27-36 (1999) (回顧性報導).35.A. R. Troiano, American Society for Metals, Metals Park, OH, USA (1974).36.S. Nakahara and Y. Okinaka, Acta Metal., 31(5), 713 (1983).37.A. Sudhakar, IEEE Interconnect Technology, pp. 161-163 (1999).38.M. D. Kriese, N. R. Moody and W. W. Gerberich, Acta Metal., 46(18), 6623 (1998).39.S. W. Russell, S. A. Rafalski, R. L. Spreitzer, J. Li, M. Moinpour, F. Moghadam and T. L. Alford, Thin Solid Films, 262, 154 (1995).40.J. C. Chuang and M. C. Chen, ‘Properties of thin Ta-N films reactively sputtered on Cu/SiO2/Si substrates,’ Thin Solid Films, 322, 213 (1998).41.陳松德, ‘濺鍍鉭基薄膜的相轉變機制與銅在金屬化處理之擴散阻礙層性質研究’, 逢甲大學材料科學學系碩士論文 (1999).42.Elliott and J. David, “Integrated Circuit Fabrication Technology 2nd”, McGraw-Hill Book Company, New York (1989).43.黃獻慶, ‘均勻與組成調制氮化鉭薄膜在銅金屬化的擴散阻礙性質評估’, 逢甲大學材料科學學系碩士論文 (2000).44.JCPDS 05-0727.45.JCPDS 41-0943.46.JCPDS 06-0691.47.JCPDS 06-0647.48.JCPDS 16-0116.49.JCPDS 15-0806.50.H. Asahara, T. Migita, T. Tanaka, K. Kawabata, Vacuum, 62,293(2001).51.C. A. Chang, J. Appl. Phys., 67(1), 556(1990)52.方昭訓,“自行對準金屬矽化物在積體電路之應用”, 真空科技, 14(4), 38(2002).53.JCPDS 23-0224.54.K. Holloway and M. Fryer, Appl. Phys. Lett. 57 (17), 1736 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top