跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張誌暉
研究生(外文):Chih-Hui Chang
論文名稱:預測梭織物複合材料之熱膨脹係數
論文名稱(外文):Prediction of Thermal Expansion Coefficients of Woven Fabric Composites
指導教授:蔡昆協
指導教授(外文):K-H Tsai
學位類別:碩士
校院名稱:逢甲大學
系所名稱:紡織工程所
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:57
中文關鍵詞:複合材料熱膨脹係數有限元素法彈簧模型
外文關鍵詞:Finite Element Methodcompositesthermal expansion coefficients
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本文是利用有限元素法配合彈簧模型並加入熱應力來計算梭織物複合材料之熱膨脹係數,進一步討論各項織物參數,包括複合材料之纖維體積含有率、單位格子高長比、各種織物構造對織物複合材料熱膨脹係數之影響。此一分析方法考慮到2D或3D織物的單位格子內纖維束之彎曲排列,及纖維束間的交互作用,將每一根纖維束視為具有相同軸向剛性的彈簧曲線,並以有限元素法分割複合材料單位格子內之彈簧及基材成為釵h微小區域的元素,再設定單位格子的邊界條件與所受到之溫度變化,即可利用有限元素法及彈簧模型來求得複合材料之熱膨脹係數。
在計算分析梭織物複材的熱膨脹係數時,設定了兩個主要的參數:纖維體積含有率及單位格子之高長比。結果顯示當固定高長比時,熱膨脹係數會隨纖維體積含有率增加而降低。當固定纖維體積含有率時,則熱膨脹係數會隨高長比增加而增加。另一方面,在比較三大梭織物系統的部份,當設定相同的纖維體積含有率與纖維束波動振幅時,複材之熱膨脹係數呈現平紋>斜紋>緞紋織物的現象;當設定相同之單位格子大小時,複材之熱膨脹係數呈現緞紋>斜紋>平紋織物的現象。最後,取相同大小的織物完全組織,依織物的織造規則改變其組織點位置,並進一步探討對複材熱膨脹係數的影響。結果顯示,不同的組織點位置並不會對材料的熱膨脹係數造成影響。經比較理論與實驗值,結果證實相當吻合。
The spring model is incorporated in the Finite Element Method (FEM) to calculate and predict the thermal expansion coefficient of the woven fabric composites. Further, the effects of various parameters on the thermal expansion properties of fabric composites will be investigated. This analysis method considers the crimp arrangement of the fiber tows and the interaction among all fiber tows in the unit cell of 2-D or 3-D fabrics. Each fiber tow is treated as a spring curve with the same rigidity as the fiber tow itself along the fiber tow direction. The simulated spring embedded in the matrix of the unit cell is then discretized into many small sections. The matrix is also discretized using adequate FEM mesh requiring the nodal points coinciding with the end points of all the spring sections. The force equilibrium equations are derived using minimum potential energy theorem. By assigning proper displacement boundary condition and the change of temperature, the elastic properties and thermal expansion coefficients of unit cell of fabric composites can be obtained.
Primarily, the effects of fiber volume fraction and the height/length (H/L) ratio of the unit cell on the thermal expansion coefficients of plain woven composites were analyzed. The results show that the thermal expansion coefficients decrease with increasing fiber volume fraction for a constant H/L ratio. On the other hand, for a constant fiber volume fraction, the thermal expansion coefficients increase with increasing H/L ratio. As for the comparison of the thermal expansion coefficient among those three different fabric composites, the following results are obtained that the satin fabric composite has the highest value and the plain fabric composite yields the lowest for a constant scale of unit cell and the plain fabric composite has the highest value and the satin fabric composite yields the lowest for a constant crimp of the fiber tows. Furthermore, the calculated thermal expansion coefficients correlate well with the experimental results.
中文摘要 I
英文摘要 II
目錄III
圖目錄Ⅴ
表目錄Ⅶ
符號意義Ⅷ
第1章 前言1
1.1 引言 1
1.2 文獻回顧3
1.3 研究動機5
第2章 理論7
2.1 彈簧模型7
2.2 有限元素法9
2.3 單位格子之單位應變與平均應力11
2.4 彈性模數之計算 15
2.5 熱膨脹係數之計算 16
2.5.1熱膨脹係數 16
2.5.2以有限元素程式計算熱膨脹係數17
2.5.3基材熱膨脹係數調整 19
第3章 實驗22
3.1 實驗材料22
3.2 實驗儀器23
3.3 實驗流程24
3.4 複材纖維體積含有率測試26
3.6 應變規之選擇與黏貼法27
3.6 應變規之校正 28
第4章 結果與討論 30
4.1平紋織物複合材料熱膨脹係數之探討 31
4.1.1單位格子切割方式對材料熱膨脹係數的影響32
4.1.2各種分析與實驗值之比較討論 35
4.1.3纖維體積含有率對材料熱膨脹係數的影響36
4.1.4單位格子高長比對材料熱膨脹係數的影響37
4.1.4.1固定纖維體積含有率時,高長比變化對熱膨脹係數之影響 38
4.1.4.2固定纖維截面積時,高長比變化對熱膨脹係數和纖維體積含有率的影響39
4.2斜紋織物複合材料熱膨脹係數之探討 41
4.2.1纖維體積含有率對材料熱膨脹係數的影響42
4.2.2單位格子高長比對材料熱膨脹係數的影響43
4.2.2.1固定纖維體積含有率時,高長比變化對熱膨脹係數之影響 43
4.2.2.2固定纖維截面積時,高長比變化對熱膨脹係數和纖維體積含有率的影響44
4.3緞紋織物複合材料熱膨脹係數之探討 45
4.3.1纖維體積含有率對材料熱膨脹係數的影響46
4.3.2單位格子高長比對材料熱膨脹係數的影響47
4.3.2.1固定纖維體積含有率時,高長比變化對熱膨脹係數之影響 47
4.3.2.2固定纖維截面積時,高長比變化對熱膨脹係數和纖維體積含有率的影響48
4.3.3比較不同織物組織結構之熱膨脹係數49
4.4三種梭織物結構之比較分析 50
4.4.1固定纖維波動振幅時,比較三種織物結構之熱膨脹係數51
4.4.1固定單位格子大小時,比較三種織物結構之熱膨脹係數53
第5章 結論55
參考文獻 56
1.K. F. Rogers, L. N. Phillips, D. M. Kingston-Lee, B. Yates, M. J. Overy*, J. P. Sargent, B. A. McCalla, “The Thermal Expansion of Carbon Fibre-reinforced Plastics. Part 1 The Influence of Fibre Type and Orientation,” Journal of Materials Science 12(1977)718-734.2.B. Yates, M. J. Overy*, J. P. Sargent, B. A. McCalla, M. Kingston-Lee, L. N. Phillips, K. F. Rogers, “The Thermal Expansion of Carbon Fibre-reinforced Plastics. Part 2 The Influence of Fibre Volume fraction,” Journal of Materials Science 13(1978)433-440.3.David E. Bowles, Stephen S. Tompkins, “Prediction of Coefficients of Thermal Expansion for Unidirectional Composites,” J. Comp. Mater., 23(1989)370-388.4.E. Sideridis, “Thermal Expansion Coefficient of Fiber Composites Defined by The Concept of the Interphase,” Com. Sci. Technol., 51(1994)301-317.5.MD. R. Islam, S. G. Sjolind1 . A. Pramila, “Finite Element Analysis of Linear Thermal Expansion Coefficients of Unidirectional Cracked Composites,” J. Comp. Mater., 35(2001)1762-1776.6.G. Korb, J. Korab and G. Groboth.“Thermal Expansion Behaviour of Unidirectional Carbon-Fibre-Reinforced Copper-Matrix Composites,” Composites Part A, 29A (1998), 1563-1567.7.A. Agbossou and J. Pastor.“Thermal Stress and Thermal Expansion Coefficients of n-Layered Fiber-Reinforced Composites,” Composites Science and Technology, 57 (1997), 249-260.8.Ran Y. Kim, Allan S. Crasto, Gregory A. Schoeppner.“Dimensional Stability of Composite in a Space Thermal Environment,” Composites Science and Technology, 60 (2000), 2601-2608.9.Giulio Romeo and Giacomo Frulla.“Analytical and Experimental Results of the Coefficient of Thermal Expansion of High-Modulus Graphite-Epoxy Materials,” Journal of Composite Materials, 29, 6(1995), 751-765.10. Takashi Ishikawa and Tsu-Wei Chou.“In-Plane Thermal Expansion and Thermal Bending Coefficients of Fabric Composites,” Journal of Composite Materials, 17(1983), 92-104.11. V. K. Ganesh and N. K. Naik. ”Thermal Expansion Coefficients of Plain-Weave Fabric Laminates,” Composites Science and Technology, 51 (1994) 387-408.12. N. K. Naik and V. K. Ganesh. ”Prediction of Thermal Expansion Coefficients of Plain Weave Fabric Composites,” Composites Structures, 26 (1993) 139-154.13. A. Dasgupta, R. K. Agarwal. and S. M. Bhandarkar, ”Three-Dimensional Modeling of Woven-Fabric Composites for Effective Thermo-Mechanical and Thermal Properties,” Composites Science and Technology,56(1996)209-223.14.Ping Tan, Leyong Tong and Grant P. Steven, “Models for Predicting Thermomechanical Properties of Three-Dimensional Orthogonal Woven Composites,” Journal of Reinforced Plastics and Composites, Vol. 18, No. 2, 1999, 151-185.15. T. Vu-Khanh and B. Liu. ”Prediction of Fibre Rearrangement and Thermal Expansion Behaviour of Deformed Woven-Fabric Laminates, ”Composites Science and Technology, 53 (1995) 183-191.16. T. Ito, T. Suganuma, K. Wakashima. ”A Micromechanics-Based Analysis for Tailoring Glass-Fiber-Reinforced Thermoplastic Laminates with Near-Zero Coefficients of Thermal Expansion,” Composites Science and Technology, 60 (2000) 1851-1861. 17. Ping Tan, Liyong Tong, Grant P. Steven.“Micromechanics Models for Mechanical and Thermomechanical Properties of 3D Through-the-Thickness Angle Interlock Woven Composites,” 30(1999), 637-648.18.林昌鼎,“梭織物複合材料性質之分析與預測”,逢甲大學紡織工程研究所碩士論文,1999。19.S. W. Yurgartis and K. Morey, “Measurement of Yarn Shape and Nesting in Plain-Weave Composites,” Composites Science and Technology 46, 1993, 39-50.20.J. A. Hewitt, D. Brown and R. B. Clarke, “Computer Modelling of Woven Composite Materials,” Composites 26, 1995, 134-140.21.D. Scida, Z. Aboura, M. L. Benzeggagh and E. Bocherens, “Prediction the Elastic Behaviour of Hybrid and Non-Hybrid Woven Composites,” Composites Science and Technology 57, 1997, 1727-1740.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊