|
Akaike, H. (1974) A new look at the statistical model identification, IEEE Trans. on Automatic Control, AC-19, 716-723.Black F. (1976) Studies of stock price volatility Changes, Proceedings of the 1976 meetings of the business and economics statisticsection, American Statistical Association, 177-181.Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327.Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992) ARCH modeling in finance: A review of the theory and empirical evidence, Journal of Econometrics, 52, 5-59.Brooks, S. P. (1998) Markov chain Monte Carlo method and its application, The Statistican, 47, Part 1, 69-100.Campbell, J. Y., and Hentschel L. (1992) No news is good new: an asymmetric modelof changing volatility in stock returns, Journal of Financial Economics, 31, 281-318.Chen, C. W. S., Chiang, T. C., and So, M. K. P. (2002) Asymmetric Reacting to the US Stock-return News: Evidence from Major Stock Markets Based on Double-Threshold Model, Technical report, Feng-Chia University, Taiwan.Chib, S. and Greenberg, E. (1995) Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335.Christie, A. (1982) The stochastic behaviour of common stock variances: value, leverage and interest rate effects, Journal of Financial Economics, 10, 407-432.Dellaportas, P., and Forster, J. (1999) Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Log-Linear Model, Biometrika, 86, 615-633.Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1008.Engle, R. F., and Ng, V. K. (1993) Measuring and testing the impact of news on volatility, Journal of Financial Economics, 48, 1749-1778.Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distribution, and Bayesian restoration of images, IEEE Transaction, on Patter Analysis and Machine Intelligence, 6, 721-741.Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996) Markov chain monte carlo in practice, London: Chapman & Hall.Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks, J. Financ., 487, 1779-1801.Gouri''eroux, C., and Monfort, A. (1992) Qualitative threshold ARCH models, Journal of Econometrics, 52, 159-199.Green, P. J. (1995) Reversible jump MCMC computation and Bayesian model determination, Biometrika, 82, 711-732.Knorr-Held, L., and Rasser, G. (2000) Bayesian Detection of Clusters and Discontinuities in Disease Maps, Biometrics, 56, 13-21.Koutmos, G., and Booth, G. G. (1995) Asymmetric volatility transmission in international stock markets, Journal of International Money and Finance, 14, 747-762.Hastings, W. K. (1970) Monte-Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109.Lam K., Li W. K., and Wong P. S. (1990) Price changes and trading volume relationship in the Hong Kong stock market, Asia Pacific Journal of Management, 7, 25-42.Li W. K., and Lam K. (1995) Modelling asymmetry in stock returns by a threshold ARCH model, The Statistician, 44, 333-341.Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, E. (1953) Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1091.Pagan A., and Schwert, G. W. (1990) Alternative models for conditional stock volatility, Journal of Econometrics, 45, 267-290.Phillips, D. B. and Smith, A. F. M. (1996) Bayesian model comparison via jump diffusions. In Practical Makov Chain Monte Carlo (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter). London: Chapman and Hall.Poon, S-H., and Taylor, S. J. (1992) Stock returns and volatility: An empirical study of the U.K. stock market, Journal of Banking and Finance, 16, 37-59.Rabemananjara R., and Zakoian, J. M. (1993) Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31-49.Richardson, S., and Green, P. J. (1997) On Bayesian analysis of mixtures with an unknow number of components(with discussion), J. R. Statist. Soc. B, 59, 731-792.Robert, C. P., and Casella, G. C. (2000) Monte Carlo statistical methods, Springer, USA.Schwarz, G. (1978) Estimating the demension of a model, Annals of Statistics, 6, 461-464.Shephard, N. (1996) Statistical Aspects of ARCH and Stochastic Volatility, in Time Series Models in Econometrices, Finance and OtherFields,} eds. D. R. Cox, D. V. Hinkley, and O. E. Barndorff-Nielsen, London: Chapman and Hall, 1-55.So, M. K. P. , Chen, C. W. S., and Liu, F. C. (2002) Best subset selection of ARX-GARCH models, Technical report, Feng-Chia University, Taiwan.So, M. K. P., Li, W. K., and Lam, K. (2002) On a threshold stochastic volatility model, Journal of Forecasting, forthcoming.Tierney, L. (1994) Markov chains for exploring posterior distribution(with discussion), Annals of Statistics, 22, 1701-1762.Tong, H. (1978) On a threshold model, in C. H. Chen (ed.), Pattern Recognition and Signal Processing, Sijthoff and Noordhoff, Amsterdam.Tong, H. (1990) Non-Linear Time Series: A Dynamical System Approach, Oxford University Press, Oxford.Tong, H., and K. S. Lim (1980) Threshold autoregressive, limit cycles and cyclical data, Journal of the Royal Statistical Society, B, 42, 245-292.Tsay, R. S. (2002) Analysis of financial time series, John Wiley & Sons, USA. Vrontos, I. D., Dellaportas, P., and Politis, D. N. (2000) Full Bayesian inference for GARCH and EGARCH models, Journal of Business & Economic Statistics, 18, 187-198.Wolfgang, H., and Christian, M. H. (2000) Discrete time option pricing with flexible volatility estimation, Finance Stochastic, 4, 189-207.Zakoian, J. M. (1994) Threshold heteroskedastic functions, J. Econ. Dyn. Control, 18, 931-955.
|