跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃智彥
研究生(外文):Chin-Yen Huang
論文名稱:功率電晶體抗輻射效應
論文名稱(外文):Radiation-Immunity Effects on Power Transistors
指導教授:賴永齡賴永齡引用關係
指導教授(外文):Yeong-Lin Lai
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:137
中文關鍵詞:抗輻射效應功率電晶體
外文關鍵詞:Radiation-Immunity EffectsPower Transistors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

摘 要

本篇論文主要是利用數值模擬方法深入瞭解功率雙擴散金氧半電晶體和絕緣閘雙極性電晶體在衛星通訊應用上的輻射效應,然後提出一個改善元件輻射容忍力的方法。本篇論文利用元件模擬將重離子照射在許多不同形式結構的功率金氧半電晶體和絕緣閘雙極性電晶體,從中分析輻射效應的內部物理機制,如single event burnout (SEB) 和 single event latchup (SEL)。
本篇論文的第一部份是顯示功率金氧半電晶體(包括雙擴散金氧半電晶體和槽狀閘極金氧半電晶體)的輻射效應,然後在不影響操作特性下發展抗輻射的元件結構。在此部分,將探討兩種垂直通道結構的功率金氧半電晶體。第一種結構是雙擴散金氧半功率電晶體,第二種結構是槽狀閘極金氧半電晶體。
本篇論文的第二部份是利用元件模擬學習功率絕緣閘雙極性電晶體(包括平面閘極絕緣閘雙極性電晶體和槽狀閘極絕緣閘雙極性電晶體)的輻射效應,然後利用製程上的修正,提出改善功率絕緣閘雙極性電晶體輻射效應的方法。在此部分,將探討兩種垂直通道結構的功率絕緣閘雙極性電晶體。第一種結構是平面閘極絕緣閘雙極性電晶體,第二種結構是槽狀閘極絕緣閘雙極性電晶體。


Abstract

In this thesis, we use the numerical simulation to provide insights into the radiation effects on double-diffused metal-oxide-semiconductor (DMOS) power transistors and insulated-gate bipolar transistors (IGBTs) for satellite communication applications and improve the radiation tolerance of these devices. By simulation, several types of power metal-oxide-semiconductor field-effect-transistors (MOSFETs) and IGBTs were irradiated with heavy ions to analyze the physical mechanisms of radiation effects, such as single event burnout (SEB) and single event latchup (SEL).
The first part of the thesis shows the radiation effects on power MOSFETs (DMOS and trench-gate MOS (UMOS)) and then develops structures to harden power MOSFETs without sacrificing normal performance. In this part, two vertical channel power MOSFET structures have been investigated. The first structure is the DMOS power transistors. The second structure is the UMOS.
Finally, the radiation effects on power IGBTs (planer gate and trench gate IGBTs) were studied through two-dimensional device simulations to find the solution to harden power IGBTs against radiation. In this part, two vertical channel power IGBT structures have been investigated. The first structure is the conventional planer gate IGBT. The second structure is the trench gate IGBT.


目 錄

中文摘要i
英文摘要 ii
誌謝iii
目錄iv
圖目錄ix
表目錄xx
第一章 緒論1
1.1 研究背景1
1.2 研究動機2
1.3 論文組織2
第二章 基本原理4
2.1 摘要4
2.2 SEB原理4
2.2.1 重離子的數值分析5
2.2.1.1 離子的軌跡5
2.2.1.2 離子所產生的線性能量轉換5
2.2.2 電流感應累增模型(CIA Model)5
2.2.3 回授機制(Feedback Mechanism)8
2.3 SEL原理9
2.3.1 IGBT閂鎖回授機制9
2.3.2 SEL回授機制11
2.3.2.1 SEL回授的四個過程12
第三章 VDMOS結構的SEB現象23
3.1 前言23
3.2 基本模擬23
3.2.1 元件結構及崩潰電壓23
3.3 SEB模擬分析25
3.3.1 分析結構B發生SEB現象時,電場、電流線及電位線的變化過程25
3.3.2 分析結構B無發生SEB現象時,電場、電流線及電位線的變化過程26
3.3.3 分析結構E的偏壓效應27
3.3.4 分析結構E的位置效應27
3.3.5 分析結構E無發生SEB現象時,電場的變化過程28
3.3.6 分析結構E發生SEB現象時,電場的變化過程28
3.3.7 利用結構E,分析漸進式CIA模式的原理29
3.3.8 離子撞擊位置的敏感性分析29
3.4 SEB改善結果模擬分析30
3.5 結論31
第四章 VIGBT的SEL現象53
4.1 前言53
4.2 基本特性模擬54
4.2.1 元件結構及崩潰電壓54
4.3 SEL模擬分析56
4.3.1 分析結構E的偏壓效應56
4.3.2 分析結構E的位置效應57
4.3.3 分析結構E無發生SEL現象時,電流線的變化過程58
4.3.4 分析結構E發生SEL現象時,電流線的變化過程58
4.3.5 分析比較結構A、E之間的輻射過程59
4.4 SEL改善結果模擬分析60
4.5 結論61
第五章 UMOS的SEB現象79
5.1 前言79
5.2 基本特性模擬79
5.2.1 元件結構及崩潰電壓79
5.3 SEB模擬分析80
5.3.1 分析結構D的偏壓效應80
5.3.1.1 分析比較結構C及D的偏壓效應81
5.3.2 分析結構D的位置效應82
5.3.3 分析結構D發生SEB現象時,電場、電流線及電位線的變化過程82
5.3.4 分析結構D無發生SEB現象時,電場、電流線及電位線的變化過程83
5.3.5 分析結構E的偏壓效應84
5.3.6 分析結構E的位置效應84
5.3.7 分析結構E發生SEB現象時,電場、電流線及電位線的變化過程85
5.3.8 分析結構E無發生SEB現象時,電場、電流線及電位線的變化過程85
5.4 SEB改善結果模擬分析86
5.5 結論87
第六章 UMOS-IGBT的SEL現象111
6.1 前言111
6.2 基本特性模擬111
6.2.1 元件結構及崩潰電壓111
6.3 SEL模擬分析112
6.3.1 分析結構D的LET效應112
6.3.2 分析結構D的偏壓效應112
6.3.3 分析結構D的位置效應113
6.3.4 分析比較結構B、C之間的輻射過程113
6.3.5 分析比較結構C、D之間的輻射過程114
6.3.6 分析結構E的LET效應115
6.3.7 分析比較結構A、E之間的輻射過程115
6.3.8 分析比較結構E、D之間的輻射過程116
6.4 SEL改善結果模擬分析116
6.5 結論117
第七章 結論132
參考文獻134


參考文獻[1] A. E. Waskiewicz, J. W. Groninger, V. H. Strahan, and D. M. Long, “Burnout of power MOS transistors with heavy ions of californium-252,” IEEE Trans. Nuc. Sci., NS-33, no. 6, pp. 1710-1713, Dec. 1986.[2] D.K. Nichols, K.P. McCarty, J.R. Coss, A. Waskiewicz, J. Groninger, D. Oberg, J. Wert, P. Majewski, and R. Koga, “Observations of single event failure in power MOSFETs,” in Proc. IEEE Data Workshop Record, July 1994, pp 41-54.[3] A. A. Keshavarz, T. A. Fischer, W. R. Dawes Jr., and C. F. Hawkins, “Computer simulation of ionizing radiation burnout in power MOSFETs,” IEEE Trans. Nuc. Sci., vol. NS-35, no. 6, pp. 1422-1427, Dec. 1988.[4] D. L. Oberg and J. L. Wert, “First nondestructive measurements of power MOSFET single event burnout cross section,” IEEE Trans. Nuc. Sci. vol. NS-34, pp. 1736-1741, 1987.[5] J. W. Adolphsen, J. L. Barth, and G. B. Gee, “First observation of proton induced power MOSFET burnout in space:the CRUX experiment on APEX,” IEEE Trans. Nuc. Sci., vol.43, no.6, pp. 2921-2926, Dec. 1996.[6] D. L. Oberg, J. L. Wert, E. Normand, P. P. Majewski, and S. A. Wender, “First observations of power MOSFET burnout with high energy nutrons,” IEEE Trans. Nuc. Sci., vol. 43, no. 6, pp. 2913-2920, Dec. 1996.[7] TMA MEDICI, Two-Dimensional Device Simulation Program. Version 4.1.[8] J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Elmsford, NY: Pergamon, 1985.[9] J. F. Ziegler, Handbook for Stopping Cross Section for Energetic Ions in All Elements, Elmsford, Pergamon Press, New York, 1980.[10] J. H. Hohl and G. H. Johnson, “Features of the triggering mechanism for single event burnout of power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. NS-36, pp. 2260-2266, 1989.[11] G. H. Johnson, J. M. Palau, C. Dachs, K. F. Galloway, and R. D. Schrimpf, “A review of the techniques used for modeling single-event effect in power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. 43, no. 2, pp. 546-560, April 1996.[12] B. Jayant Baliga, Power Semiconductor Devices, PWS Publishing Company 1995.[13] G. H. Johnson, R. D. Schrimpf, K. F. Galloway, and R. Koga, “Temperature dependence of single event burnout in n-channel power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. 39, pp. 1605-1612, Dec. 1992.[14] E. Lorfevre, B. Sagnes, G. Bruguier, J. M. Palau, J. Gasiot, M. C. Calvet, and R. Ecoffer, “Cell design modifications to harden a n-channel power IGBT against single event latchup,” IEEE Trans. Nuc. Sci., vol. 46, no. 6, pp. 1410-1414, Dec. 1999.[15] S. Buchner, D. Mcmorrow, J. Melinger, and A. B. Campbell, “Laboratory tests for single-event effects,” IEEE Trans. Nuc. Sci., vol. 43, no. 2, pp. 678-686, April 1996.[16] F. Rouband, C. Dachs, J. M. Palau, J. Gasiot, and P. Tastet, “Experimental and 2-D study of the single-event burnout in n-channel power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. 40, pp. 1952-1958, 1993.[17] F. Rouband, C. Dachs, J. M. Palau, J. Gasiot, and P. Tastet, “Use of 2D simulations to study parameters influence on SEB occurrence in n-channel MOSFET’s,” in Proc. RADECS, 1993, 13-16 September, St-Malo, pp. 446-451.[18] G. H. Johnson, J. H. Hohl, R. D. Schrimpf, and K. F. Galloway, “Simulating single-event burnout of n-channel power MOSFET’s,” IEEE Trans. Electron Devices, vol. 40, no 5, pp. 1001-1008, May 1993.[19] K. Shenai, “Effect of p-base sheet and contact resistances on static current-voltage characteristics of scaled low-voltage vertical power DMOSFET’s,” IEEE Electron Device Lett., vol. 12, no. 6, pp. 270-272, June 1991.[20] B. B. Pejcinovic and M. H. Persun, “Role of parasitic BJT in the design of DMOSFET,” Computers in Power Electronics, pp. 128-131, Aug. 1996.[21] C. Dachs, F. Rouband, J. M. Palau, J. Gasiot, and P. Tastet, “Simulation aided hardening of n-channel power MOSFET’s to prevent single event burnout,” IEEE Trans. Nuc. Sci., vol. 42, no. 6, pp. 1935-1939, 1995.[22] D. A. Grant and J. Gowar, Power MOSFETs: Theory and Applications, New York: John Wiley □ Sons, Chapter 3, 1989.[23] E. Lorfevre, C. Dachs, Celine Detcheverry, Jean Marie Palau, Franck Roubaud, Jean Gasiot, Marie Catherine Calvet, and Robert Ecoffet, “Heavy ion induced failures in a power IGBT,” IEEE Trans. Nuc. Sci., vol. 44, no. 6, pp. 2353-2357, Dec. 1997.[24] E. Lorfrvre, C. Dachs, Celine Detcheverry, Christophe Sudre, Franck Roubaud, Jean Marie Palau, Jean Gasiot, Marie Catherine Calvet, and R. Ecoffet, “Failure mode of different irradiated power IGBT structures,” IEEE Trans. Nuc. Sci., pp. 516-519, 1998.[25] A. Brambilla, E. Dallago, and R. Romano, “Analysis of an IGBT power module,” in Proc. IEEE IECON’94, Sept. 1994, vol. 1, pp. 129-134.[26] E. Suekawa, Y. Tomomatsu, T. Enjoji, H. Kondoh, M. Takeda, and T. Yamada, “High voltage IGBT (HV-IGBT) having p+/p- collector region,” in Proc. IEEE International Symposium on Power Semiconductor Devices, June 1998, pp. 249-252. [27] M. Trivedi and K. Shenai, “Investigation of the short-circuit performance of an IGBT,” IEEE Trans. Electron Devices, vol. 45, pp. 313-320, Jan. 1998.[28] E. Lorfrvre, B. Sagnes, G. Bruguier, J. M. Palau, J. Gasiot, M. C. Calvet, and R. Ecoffet, “Cell design modifications to harden a n-channel power IGBT against single event latchup,” IEEE Trans. Nuc. Sci., vol. 46, no. 6, pp. 1410-1414, December 1999.[29] A.Narazaki, J. Maruyama, T. Kayumi, H. Hamachi, J. Moritani, and S. Hine, “A 0.35 /spl mu/m trench gate MOSFET with an ultra low on state resistance and a high destruction immunity during the inductive switching,” in Proc. IEEE International Symposium on Power Semiconductor Devices, May 2000, pp. 377-380.[30] N. Ramungul, T.P. Chow, M. Ghezzo, J. Kretchmer, and W. Hennessy, “A fully planarized, 6H-SiC UMOS insulated-gate bipolar transistor,” in Proc. Device Research Conference, June 1996, pp. 56-57.[31] H. R. Chang and B. J. Baliga, “500-V n-channel insulated-gate bipolar transistor with a trench gate structure,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1824-1829, Sept. 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top