|
參考文獻[1] A. E. Waskiewicz, J. W. Groninger, V. H. Strahan, and D. M. Long, “Burnout of power MOS transistors with heavy ions of californium-252,” IEEE Trans. Nuc. Sci., NS-33, no. 6, pp. 1710-1713, Dec. 1986.[2] D.K. Nichols, K.P. McCarty, J.R. Coss, A. Waskiewicz, J. Groninger, D. Oberg, J. Wert, P. Majewski, and R. Koga, “Observations of single event failure in power MOSFETs,” in Proc. IEEE Data Workshop Record, July 1994, pp 41-54.[3] A. A. Keshavarz, T. A. Fischer, W. R. Dawes Jr., and C. F. Hawkins, “Computer simulation of ionizing radiation burnout in power MOSFETs,” IEEE Trans. Nuc. Sci., vol. NS-35, no. 6, pp. 1422-1427, Dec. 1988.[4] D. L. Oberg and J. L. Wert, “First nondestructive measurements of power MOSFET single event burnout cross section,” IEEE Trans. Nuc. Sci. vol. NS-34, pp. 1736-1741, 1987.[5] J. W. Adolphsen, J. L. Barth, and G. B. Gee, “First observation of proton induced power MOSFET burnout in space:the CRUX experiment on APEX,” IEEE Trans. Nuc. Sci., vol.43, no.6, pp. 2921-2926, Dec. 1996.[6] D. L. Oberg, J. L. Wert, E. Normand, P. P. Majewski, and S. A. Wender, “First observations of power MOSFET burnout with high energy nutrons,” IEEE Trans. Nuc. Sci., vol. 43, no. 6, pp. 2913-2920, Dec. 1996.[7] TMA MEDICI, Two-Dimensional Device Simulation Program. Version 4.1.[8] J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Elmsford, NY: Pergamon, 1985.[9] J. F. Ziegler, Handbook for Stopping Cross Section for Energetic Ions in All Elements, Elmsford, Pergamon Press, New York, 1980.[10] J. H. Hohl and G. H. Johnson, “Features of the triggering mechanism for single event burnout of power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. NS-36, pp. 2260-2266, 1989.[11] G. H. Johnson, J. M. Palau, C. Dachs, K. F. Galloway, and R. D. Schrimpf, “A review of the techniques used for modeling single-event effect in power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. 43, no. 2, pp. 546-560, April 1996.[12] B. Jayant Baliga, Power Semiconductor Devices, PWS Publishing Company 1995.[13] G. H. Johnson, R. D. Schrimpf, K. F. Galloway, and R. Koga, “Temperature dependence of single event burnout in n-channel power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. 39, pp. 1605-1612, Dec. 1992.[14] E. Lorfevre, B. Sagnes, G. Bruguier, J. M. Palau, J. Gasiot, M. C. Calvet, and R. Ecoffer, “Cell design modifications to harden a n-channel power IGBT against single event latchup,” IEEE Trans. Nuc. Sci., vol. 46, no. 6, pp. 1410-1414, Dec. 1999.[15] S. Buchner, D. Mcmorrow, J. Melinger, and A. B. Campbell, “Laboratory tests for single-event effects,” IEEE Trans. Nuc. Sci., vol. 43, no. 2, pp. 678-686, April 1996.[16] F. Rouband, C. Dachs, J. M. Palau, J. Gasiot, and P. Tastet, “Experimental and 2-D study of the single-event burnout in n-channel power MOSFET’s,” IEEE Trans. Nuc. Sci., vol. 40, pp. 1952-1958, 1993.[17] F. Rouband, C. Dachs, J. M. Palau, J. Gasiot, and P. Tastet, “Use of 2D simulations to study parameters influence on SEB occurrence in n-channel MOSFET’s,” in Proc. RADECS, 1993, 13-16 September, St-Malo, pp. 446-451.[18] G. H. Johnson, J. H. Hohl, R. D. Schrimpf, and K. F. Galloway, “Simulating single-event burnout of n-channel power MOSFET’s,” IEEE Trans. Electron Devices, vol. 40, no 5, pp. 1001-1008, May 1993.[19] K. Shenai, “Effect of p-base sheet and contact resistances on static current-voltage characteristics of scaled low-voltage vertical power DMOSFET’s,” IEEE Electron Device Lett., vol. 12, no. 6, pp. 270-272, June 1991.[20] B. B. Pejcinovic and M. H. Persun, “Role of parasitic BJT in the design of DMOSFET,” Computers in Power Electronics, pp. 128-131, Aug. 1996.[21] C. Dachs, F. Rouband, J. M. Palau, J. Gasiot, and P. Tastet, “Simulation aided hardening of n-channel power MOSFET’s to prevent single event burnout,” IEEE Trans. Nuc. Sci., vol. 42, no. 6, pp. 1935-1939, 1995.[22] D. A. Grant and J. Gowar, Power MOSFETs: Theory and Applications, New York: John Wiley □ Sons, Chapter 3, 1989.[23] E. Lorfevre, C. Dachs, Celine Detcheverry, Jean Marie Palau, Franck Roubaud, Jean Gasiot, Marie Catherine Calvet, and Robert Ecoffet, “Heavy ion induced failures in a power IGBT,” IEEE Trans. Nuc. Sci., vol. 44, no. 6, pp. 2353-2357, Dec. 1997.[24] E. Lorfrvre, C. Dachs, Celine Detcheverry, Christophe Sudre, Franck Roubaud, Jean Marie Palau, Jean Gasiot, Marie Catherine Calvet, and R. Ecoffet, “Failure mode of different irradiated power IGBT structures,” IEEE Trans. Nuc. Sci., pp. 516-519, 1998.[25] A. Brambilla, E. Dallago, and R. Romano, “Analysis of an IGBT power module,” in Proc. IEEE IECON’94, Sept. 1994, vol. 1, pp. 129-134.[26] E. Suekawa, Y. Tomomatsu, T. Enjoji, H. Kondoh, M. Takeda, and T. Yamada, “High voltage IGBT (HV-IGBT) having p+/p- collector region,” in Proc. IEEE International Symposium on Power Semiconductor Devices, June 1998, pp. 249-252. [27] M. Trivedi and K. Shenai, “Investigation of the short-circuit performance of an IGBT,” IEEE Trans. Electron Devices, vol. 45, pp. 313-320, Jan. 1998.[28] E. Lorfrvre, B. Sagnes, G. Bruguier, J. M. Palau, J. Gasiot, M. C. Calvet, and R. Ecoffet, “Cell design modifications to harden a n-channel power IGBT against single event latchup,” IEEE Trans. Nuc. Sci., vol. 46, no. 6, pp. 1410-1414, December 1999.[29] A.Narazaki, J. Maruyama, T. Kayumi, H. Hamachi, J. Moritani, and S. Hine, “A 0.35 /spl mu/m trench gate MOSFET with an ultra low on state resistance and a high destruction immunity during the inductive switching,” in Proc. IEEE International Symposium on Power Semiconductor Devices, May 2000, pp. 377-380.[30] N. Ramungul, T.P. Chow, M. Ghezzo, J. Kretchmer, and W. Hennessy, “A fully planarized, 6H-SiC UMOS insulated-gate bipolar transistor,” in Proc. Device Research Conference, June 1996, pp. 56-57.[31] H. R. Chang and B. J. Baliga, “500-V n-channel insulated-gate bipolar transistor with a trench gate structure,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1824-1829, Sept. 1989.
|