(44.192.112.123) 您好!臺灣時間:2021/03/08 14:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林國璋
研究生(外文):Kuo-Chang Lin
論文名稱:低錳鑄鋼之淬火-回火熱處理與金相顯微組織及機械性質關係之研究
論文名稱(外文):The Relationships among Quenching-Tempering Heat Treatment, Metallographic Microstructure and Mechanical Properties of Low Manganese Cast Steel
指導教授:楊榮顯
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械工程學所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:86
中文關鍵詞:低錳鑄鋼淬火-回火化學成份機械性質針狀肥粒鐵破壞模式流動性
外文關鍵詞:Low manganese cast steelFluidityMechanical propertyQuenching-temperingChemical compositionRupture modeAcicular ferrite
相關次數:
  • 被引用被引用:10
  • 點閱點閱:638
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

本研究是利用淬火(1123K、1173K、1223K)-回火(823K、873K、923K)熱處理條件變化及改變化學成分(碳、錳),以探討低錳鑄鋼(SCMn)之金相顯微組織、機械性質及流動性。
研究結果顯示,低錳鑄鋼經過淬火後再施以不同回火溫度熱處理之回火組織,隨著回火溫度的升高,塊狀肥粒鐵(Blocky ferrite)的晶粒會越大、針狀肥粒鐵(Acicular ferrite)的數量變少,以及雪明碳鐵會有明顯的球化情形。沃斯田鐵化溫度愈高時,經過回火後組織中所遺留的針狀肥粒鐵則愈多。
回火溫度不僅對低錳鑄鋼之金相顯微組織產生了改變,亦對於低錳鑄鋼之機械性質造成了顯著的影響。低錳鑄鋼經過淬火-回火熱處理後之抗拉強度、硬度會隨著回火溫度的升高而降低,延性與韌性則會隨著回火溫度的升高而增加。而當回火溫度相同時,較高沃斯田鐵化溫度淬火處理之回火組織,其抗拉強度、降伏強度、硬度會高於經過較低沃斯田鐵化溫度淬火處理之試片,但是韌性則相反。
低錳鑄鋼中之碳及錳含量的增加皆會使針狀肥粒鐵變多、塊狀肥粒鐵晶粒變小,使其抗拉、降伏強度及硬度增加,韌性降低。而碳含量對於低錳鑄鋼之抗拉強度的影響會比錳含量的影響較為顯著。
隨著回火溫度的上升,拉伸及衝擊試驗後試片破斷面之漩窩孔(Dimple)狀的延性破壞模式更加明顯;在較低回火溫度條件之破斷面除具有延性破壞外,還會有局部類似劈裂破壞的脆性破壞模式產生。當低錳鑄鋼之碳及錳含量增加時,會使試片破斷面之脆性破壞模式更為明顯。
低錳鑄鋼化學成份對於流動性影響之優劣順序為:0.5%C>0.3% C>0.2%C,及1.0%Mn>1.3%Mn>1.6%Mn。


This research investigated the effect of heat treatment condition and chemical compositions(carbon or manganese) on mechanical properties, microstructure, and fluidity of low manganese cast steel (SCMn).
The results of this study showed that after quenching-tempering heat treatment, the tempered microstructures of low manganese cast steel specimens were consisted of blocky ferrite, acicular ferrite and cementite. Higher tempering temperature made cementite be spheroidal apparently, and led the grains of blocky ferrite growth, reduce the amount of acicular ferrite. The tempering temperature not only changed the microstructure of low manganese cast steel, but also affected the mechanical properties. After quenching-tempering heat treatment, as the tempering temperature increased, the tensile strength and hardness level of low manganese casting steel decreased, but ductility and toughness increased.
Increasing carbon and manganese contents generally increased the amount of acicular ferrite and decreased the grain size of blocky ferrite, leading to increase tensile strength and hardness level, but decrease toughness. The effect of carbon content on the tensile strength of low manganese casting steel was more significant than manganese content.
As the tempering temperature increased, the rupture mode of rupture surface of the tensile and impact test specimen after ruptured exhibited completely ductile rupture with dimple characteristics. In low tempering temperature there were localized quasi-cleavage rupture of brittle rupture mode facet, in addition to ductile rupture mode. When carbon and manganese contents increased, the brittle rupture mode of rupture surface was more evident.
The order of fluidity of low manganese casting steel for chemical composition was that 0.5%C>0.3%C>0.2%C, and 1.0%Mn>1.3%Mn> 1.6%Mn.


中文摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ I
英文摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧III
目 錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ V
中文圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧IX
英文圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XII
中文表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XVI
英文表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧XVII
第一章 緒論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.1前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.2文獻回顧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2
1.3研究動機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4
第二章 基本理論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 6
2.1化學成份對於鑄鋼性質的影響‧‧‧‧‧‧‧‧6
2.1.1碳的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6
2.1.2矽的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6
2.1.3錳的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6
2.1.4鋁的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7
2.2 低錳鋼之平衡圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧9
2.3 淬火‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9
2.4 回火‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12
2.5沃斯田鐵化溫度的影響‧‧‧‧‧‧‧‧‧‧‧13
2.6晶粒大小的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧13
2.7拉伸及衝擊試片之破壞模式‧‧‧‧‧‧‧‧‧13
2.7.1 延性破壞‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧14
2.7.2 劈裂破壞‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧14
第三章 實驗設備及實驗方法‧‧‧‧‧‧‧‧‧‧ 17
3.1 實驗流程與步驟‧‧‧‧‧‧‧‧‧‧‧‧‧ 17
3.2 實驗材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧18
3.3 熱處理方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧22
3.4 機械性質測試‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23
3.4.1 硬度測試‧‧‧‧‧‧‧‧‧‧‧‧‧‧23
3.4.2 拉伸試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧24
3.4.3 衝擊試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧24
3.5低錳鑄鋼之顯微組織觀察及計量‧‧‧‧‧‧24
3.5.1沃斯田鐵結晶粒度之計量‧‧‧‧‧‧‧24
3.5.2光學顯微鏡(OM)觀察‧‧‧‧‧‧‧‧‧25
3.5.3掃描式電子顯微鏡(SEM)觀察‧‧‧‧‧‧25
3.5.4 XRD分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧26
3.6 流動性試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26
3.7 實驗設備‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26
第四章 實驗結果與討論‧‧‧‧‧‧‧‧‧‧‧‧ 29
4.1低錳鑄鋼之顯微組織觀察‧‧‧‧‧‧‧‧‧‧29
4.1.1沃斯田鐵化溫度對於基地組織的影響‧‧‧‧ 29
4.1.2淬火-回火熱處理條件對於金相顯微組織的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧30
4.2沃斯田鐵化溫度對低錳鑄鋼沃斯田鐵結晶粒的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧49
4.3低錳鑄鋼之硬度試驗‧‧‧‧‧‧‧‧‧‧‧‧51
4.3.1塊狀肥粒鐵與針狀肥粒鐵之硬度值比較‧‧‧51
4.3.2淬火-回火熱處理條件對於低錳鑄鋼硬度的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧51
4.3.3錳含量對於低錳鑄鋼硬度(HRB)的影響‧‧‧52
4.3.4碳含量對於低錳鑄鋼硬度(HRB)的影響‧‧‧52
4.4低錳鑄鋼之拉伸試驗‧‧‧‧‧‧‧‧‧‧‧‧56
4.4.1淬火-回火熱處理條件對低錳鑄鋼拉伸性質的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧56
4.4.2錳含量對低錳鑄鋼抗拉強度的影響‧‧‧‧60
4.4.3碳含量對低錳鑄鋼抗拉強度的影響‧‧‧‧61
4.4.4碳及錳元素對於低錳鑄鋼抗拉強度影響之比較‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧62
4.4.5 拉伸試片破斷面分析‧‧‧‧‧‧‧‧‧‧63
4.5低錳鑄鋼之衝擊試驗‧‧‧‧‧‧‧‧‧‧‧‧68
4.5.1淬火-回火熱處理條件對於衝擊值的影響‧‧68
4.5.2錳含量對於低錳鑄鋼衝擊值的影響‧‧‧‧69
4.5.3碳含量對於低錳鑄鋼衝擊值的影響‧‧‧‧70
4.5.4衝擊試片破斷面分析‧‧‧‧‧‧‧‧‧‧72
4.6低錳鑄鋼之流動性‧‧‧‧‧‧‧‧‧‧‧‧‧76
4.6.1碳含量對低錳鑄鋼流動性的影響‧‧‧‧‧76
4.6.2錳含量對低錳鑄鋼流動性的影響‧‧‧‧‧76
第五章 結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 78
參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧80
附錄1:JCPDS Standard 44-1290(Martensite) ‧‧84
附錄2:JCPDS Standard 06-0696(Ferrite) ‧‧‧ 85


1.楊榮顯, ”濕砂模標準試片性質之研究”, 行政院國家科學委員會專題研究計畫成果報 告, 1994年.2.呂傳盛, ”熔煉及鑄造處理對Fe-Mn-Al系合金凝固組織及機械性質影響研究”, 行政院國 家科學委員會專題研究計畫成果報告, 1988年.3.黃力行、林鴻振、施登士、蕭述三, ”流體粘滯係數對鑄造流路系統之影響”, 鑄工, 第 22卷, 第4期, 民國85年12月.4.廖謙齡, 鑄鋼的冶金學理, 鑄工, 第38期, 民國72年9月.5.中國機械工程學會鑄造專業學彙編, 鑄造手冊 鑄鋼, 機械工業出版社, 1993.6.J. W. Tweed, J. F. Knott, “Micromechanisms of Failure in C-Mn Weld Metals”, Acta Met. , vol. 35, n. 7, 1987, p.1401-1414.7.V. M. Goritskii, G. R. Shneiderov, and T. G. Zaitseva, “Effect of Heat Treatment Schedules on The Resistance To Brittle Failure of Low-Alloy Plate Steel 09G2S”, Metal Science and Heat Treatment, vol.32, no.11-12, 1991, p.891-895.8.Z. Yanushevich, Z. Gulishiya, V. Diordievich, R. Gulishiya, and Z. Karastoikovich, “Effect of Tempering Regimes on The Structure and Mechenical Properties of Intermediate-Alloyed Steel”, Metal Science and Heat Treatment, vol. 37, n. 11-12, 1995, p.457-459.9.A. Tiziani, “Improvement of AISI D2 Steel Properties by Unconventional Vacuum Heat Treatments”, Materials Science and Engineering A, vol.101, 1988, p.125-133.10.Hiroyoshi Yashiki, “Effect of Mn and S on the Grain Growth and Texture in Cold Rolled 0.5%Si Steel”, ISIJ International, vol.30, no.4, 1990, p.325- 330.11.F. Zia-Ebrahimi and G. Krauss, “Mechanisms of Tempered Martensite Embrittlement in Medium-Carbon Steels”, Acta Met., vol.32, no.10, 1984, p.1767-1777.12.T. Tsuchiyama, Y. Miyamoto and S. Takaki, “Recrystallization of Lath Martensite with Bulge Nucleation and Growth Mechanism”, ISIJ International, vol.41, no.9, 2001, p.1047-1052.13.Ashok Kumar Panda, Dharba Subhramanya Sarma, Ratan Indu Ganguly and Somnath Misa, “Tempering Behaviour of A Dual-Phase Low-Alloy Steel”, Steel Research, vol.64, no.10, 1993, p.513-516.14.余煥騰 譯,“沃斯田鐵之結晶微細化對鋼強化之探討”,金屬熱處理,59期,民國87年 12月,p. 85-94。15.蔡全華, 劉禎祥, 鑄鋼實務, 中華民國鑄造學會, 1991.16.日本鑄物協會, 鑄物便覽, 丸善株式會社, 1986.17.Paul M. Unterweiser, Howard E. Boyer, James J. Kubbs, Heat Treater’s Guide, ASM, 1982.18.胡光立, 謝希文, 鋼的熱處理, 西北工業大學出版, 1993.19.楊榮顯, 工程材料學,全華,1997年。20.E. Navara, B. Bengtsson, K. E. Easterling, “Austenite Formation in Manganese-Partitioning Dual-Phase Steel”, Materials Science and Technology, vol. 2, 1986, p.1196-1201.21.金重勳, 熱處理, 復文書局, 1999.22.G. V. Raynor, V. G. Rivlin, Phase Equilibria in Iron Ternary Alloys, Institute of Metals, 1988, p.172.23.Liu Cheng, C. M. Brakman, B. M. Korevaar, and E. J. Mittemeijer, “The Tempering of Iron-Carbon Martensite; Dilatometric and Calorimetric Analysis”, Metall. Trans. A, vol.19, 1988, p.2415-2426.24.Wei-Di Cao, Xiao-Ping Lu, “Interpretation of the Effect of High Austenitizing Temperature on Toughness Behavior in a Low Alloy High Strength Steel”, Metall. Trans. A, vol.18, 1987, p.1569-1585.25.Ramen Datta, Sanak Mishra, “Some New Results in Thermomechanical Processing of Microalloyed Steels”, Bull. Mater. Sci., vol.17, no.6, 1994, p.643-662.26.黃信二, ”CM247LC微細晶鑄造特性及機械性質研究”, 台灣大學碩士論文, 2001.27.Hoon Kwon and Jin C. Cha, “The Effect of Grain Size on Fracture Behaviour in Tempered Martensite Embrittlement for AISI 4340 Steel”, Materials Science and Engineering, vol.100, 1988, p.121-128.28.R. Becker, R. E. Smelser, O. Richmond, E. J. Appleby, “The Effect of Void Shape on Void Growth and Ductility in Axisymmetric Tension Tests”, Metall. Trans. A, vol.20, 1989, p.853-861.29.F. Ebrahimi and H. K. Seo, “Ductile Crack Initiation in Steels”, Acta Mater., vol.44, no.2, 1996, p.831-843.30.Lothar Engel, Herman Klingele, An Atlas of Metal Damage, Wolfe, 198131.G. G. Chell, Developments in Fracture Mechanics, Applied Science Publishers, 1981.32.Rober E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles, 1992.33.林良清, 近代造模法, 中華民國鑄造學會, 1990.34.日本規格協會, JIS Handbook Ferrous Materials and Metallurgy, 日本規格協會, 1985.35.Howard E. Boyer, Timothy L. Gall, Metals Handbook, ASM, 1985.36.George F. Vander Voort, Metallography Principle and Practice, McGraw-Hill, 1984.37.陳紀任, ”石墨型態對於鋁系耐熱鑄鐵高溫氧化性質與流動性的影響”, 逢甲大學碩士 論文, 2001.38.J.V. Bee, D.V. Edmonds, “Metallographic study of high-temperature decomposition of austenite in alloy steels containing Mo and Cr”, Materials Characterization, vol. 39, n. 2-5, 1997, p. 361-379. 39.T. S. Shih, J.Y. Wang, “Variation of Inclusions in Cast Steel with Mold Type and Its Effect on Properties”, vol.98, 1990, p.105-113.40.S.W. Thompson, D.J. Colvin, G. Krauss, “Continuous Cooling Trasformations and Microstructures of a Low-Carbon, High-Strength Low-Alloy Plate Steel”, Metall. Trans. A, vol.21, 1990, p.1493-1507.41.M.T. Miglin, J.P. Hirth, A.R. Rosenfield, W.A.T. Clark, “Microstructure of a Quenched and Tempered Cu-Bearing High-Strenghth Low-Alloy Steel”, Metall. Trans. A, vol.17, 1986, p.791-798.42.Eric Lifshin, X-ray Characterization of Materials, Wiley-VCH, 1999, p.17.43.Hsun Hu, S.R. Goodman, “Effect of Manganese on the Annealing Texture and Strain Ratio of Low-Carbon Steels”, Metallurgical Transactions, vol.1, 1970, p.3057-3064.44.A. Joarder, J. N. Jha, S. N. Ojha, and D. S. Sarma, “The Tempering Behavior of a Plain Carbon Dual-Phase Steel”, Materials Characterization, vol. 25, 1990, p.199-209.45.S. K. Liu, J. Zhang, “The Influence of the Si and Mn Concentrations on the Kinetics of the Bainite Transformation in Fe-C-Si-Mn Alloys”, Metall. Trans. A, vol.21, 1990, p.1517-1525.46.N. S. Cheruvu, B. B. Seth, “The Influence of Impurity Content, Tensile Strength, and Grain Size on In-Service Temper Embrittlement of CrMoV Steels”, Metall. Trans. A, vol.20, 1989, p.2345-2354.47.Estela Rodriguez de Schiapparelli, “On the Effect of Non-Metallic Inclusions on Hydrogen Damage in Aluminium-killed Steel” Journal of Materials Science, Vol.23, 1988, p.3338-3341.48.Serope Kalpakjian, “Manufacturing Processes for Engineering Materials”, Addison-Wesley, 1997, p.228-229.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔