跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李麗雲
研究生(外文):Lee-Yun Li
論文名稱:造紙工業二級放流水之回收再利用
論文名稱(外文):Reclamation and Reuse for Secondary Effluent of the Paper-Mill Industry
指導教授:吳俊哲
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:造紙工業UF薄膜回收再利用臭氧活性碳離子交換
外文關鍵詞:Pulp and Paper-mill IndustryUF MembraneReclamation and ReuseOzonationActivated Carbon AdsorptionIon Exchange
相關次數:
  • 被引用被引用:3
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要在於探討造紙工業之二級處理放流廢水,經過各種不同淨水處理程序之水質變化與未來再利用之方向。實驗以實廠廢水為模擬之對象。本研究所選用之高級淨水程序包括UF薄膜、臭氧氧化、活性碳吸附及離子交換等。而水質特性的變化則包括濁度、有機物、溶解性無機鹽類及大腸桿菌等,
實驗中比較兩種不同材質、相同孔徑大小(MWCO 10K Da)的UF薄膜對於該造紙廠二級放流廢水之適用性,結果顯示,Biomax薄膜雖然其基本流通量與廢水小壓力操作時之流通量較大,但因為比Plcgc薄膜更容易阻塞與積垢,反沖洗後通量恢復率也較低,較不適合長時間操作,因此,Plcgc薄膜較適合本研究之廢水水質的操作。
UF薄膜對於濁度與BOD5分別有72 ﹪與69 ﹪的去除率。因廢水中以低分子量有機物所佔比例為高,因此,TOC只能移除17 ﹪。臭氧與活性碳對於色度、UV254 都皆有96 ﹪的去除能力,有機物方面活性碳吸附99 ﹪去除效果會高於臭氧氧化的71 ﹪。離子交換處理程序中,SO42-、Cl-、導電度與硬度也有98 ﹪以上的高去除效果。整體的再生水質而言(大腸桿菌除外),以經過活性碳吸附並經離子交換樹脂之處理流程,將比經臭氧氧化再經離子交換樹脂處理有更良好之成效;另外若是針對高細菌性污染指標之原水建議仍以臭氧作為消毒的流程。
造紙工業二級放流廢水經UF薄膜處理可符合美國EPA公佈都市廢水再利用準則中之非直接或間接接觸之娛樂及非食用性的灌溉。若再經臭氧處理或是活性碳吸附後加氯消毒,即可再利用於直接接觸之娛樂或食用性灌溉,以及灑水、景觀用水、廁所沖洗等。最後,再以離子交換處理後之水質,除了氨氮無法符合外,其餘皆可符合國內污水注入地下水體之標準。
Increasing demands on water resources for domestic, commercial, industrial, and agricultural purposes have made water reclamation and reuse an attractive and promising alternative for many countries on conserving and extending available water supplies. In Taiwan, the shortage of water resources has led to a severe barrier that potentially limits or hinders its economic development and industrial sustainability. Therefore, techniques associated with water reclamation and reuse should be fully developed in advance. Due to the fact that the water demand and wastewater generation in pulp and paper-mill industry is relatively abundant compared with other traditional industries, reclamation on this specific wastewater should be extensively addressed in the future.
This research was focused on the evaluation of reclamation and reuse from the secondary effluent of paper-mill industry using advanced treatment processes including UF membrane, ozonation, activated carbon adsorption, and ion exchange. The alteration of water quality of secondary wastewater was analyzed, such as turbidity, organics, dissolved inorganic salts, and E. coli. Two different types of UF membranes, Biomax and Plcgc, having the same molecular weight cut off (MWCO) equal to 10,000 daltons were used as pretreatment. Although results show that Biomax UF has higher water flux than Plcgc UF, membrane deterioration by fouling has been observed in a long-term operation test for Biomax UF. Therefore, membrane material like Plcgc is though having better suitability to be performed for the paper-mill wastewater. Both UF membranes enable to remove turbidity for 72% and BOD5 for 69%. Ozonation and GAC adsorption processes can eliminate color and UV254 for more than 96%. However, GAC adsorption is demonstrated to degrade organic substances better than ozonation process. Ion exchange is found to effectively remove dissolved inorganic salts, such as sulfate, chloride, hardness, etc. In summary, processes combining UF, GAC, and ion exchange would be recommended as the best treatment train for the reclamation of paper-mill wastewater. As for reuse purpose with the treated wastewater, secondary effluent of paper-mill wastewater treated by UF process alone will meet the category of USEPA in non-contact recreational and irrigational use. If ozonation or GAC is applied with subsequent chlorination, it would additionally enhance the reuse quality of wastewater for contact recreational and irrigational use. When combining with ion exchange process, the water quality, except ammonia, can meet the domestic standards of drinking water and groundwater recharging.
第一章 緒論1
1-1 研究緣起1
1-2 研究目的2
第二章、文獻回顧3
2-1 回收再利用3
2-1-1 回收再利用基本介紹3
2-1-2 各國回收再利用規範5
2-1-3 回收再利用相關實例11
2-2造紙工業13
2-2-1 概述13
2-2-2 造紙業污染源14
2-3回收處理技術17
2-3-1 薄膜17
2-3-1-1 薄膜原理與機制17
2-3-1-2 薄膜膜組構造與材質種類23
2-3-1-2.1 薄膜膜組構造23
2-3-1-2.2 薄膜材質種類24
2-3-1-3 薄膜之操作條件暨積垢探討27
2-3-1-4 薄膜應用實例30
2-3-2 臭氧33
2-3-2-1 臭氧之基本性質33
2-3-2-2 臭氧與有機物的反應機制34
2-3-3 活性碳吸附40
2-3-3-1 活性碳基本性質40
2-3-3-2 活性碳的種類42
2-3-3-3 活性碳吸附之影響因子42
2-3-3-4 等溫吸附模式44
2-3-4 離子交換48
2-3-4-1 離子交換原理48
2-3-4-2 離子交換樹脂之分類49
2-3-4-3 離子交換之應用52
第三章、實驗材料與方法53
3-1 實驗材料與設備53
3-1-1 UF薄膜設備53
3-1-2 臭氧裝置55
3-1-3 活性碳吸附裝置56
3-1-4 離子交換裝置59
3-2 實驗方法61
3-2-1 實驗流程61
3-2-2 薄膜處理實驗61
3-2-2-1 基本流通量測定64
3-2-2-2 操作壓力與流通量關係之實驗64
3-2-2-3 反沖洗與流通量恢復率關係之實驗64
3-2-2-4 薄膜長時間操作積垢測試實驗65
3-2-3 臭氧氧化實驗65
3-2-4 活性碳吸附之實驗66
3-2-4-1 活性碳前處理66
3-2-4-2 活性碳管柱填充66
3-2-4-3 等溫吸附模式實驗66
3-2-4-4 連續流管柱實驗67
3-2-5 離子交換樹脂之實驗68
3-2-5-1 離子交換管柱填充68
3-2-5-2 經臭氧氧化後之連續流管柱實驗68
3-2-5-3 經活性碳吸附後之連續流管柱實驗69
3-2-6 水質分析設備與方法69
3-2-6-1 水質分析設備69
3-2-6-2 水質分析方法70
第四章 結果與討論72
4-1 正隆造紙廠二級放流廢水基本水質分析72
4-2 回收處理技術75
4-2-1 UF薄膜處理75
4-2-1-1 基本流通量特性試驗75
4-2-1-2 操作條件之影響79
4-2-1-2.1 操作壓力與流通量之關係79
4-2-1-2.2 TMP與去除有機污染物之關係84
4-2-1-2.3 反沖洗時間與通量恢復率之關係86
4-2-1-3 污染物去除效率87
4-2-1-4 薄膜材質選擇與長時間操作積垢試驗88
4-2-2 臭氧氧化與活性碳吸附91
4-2-2-1 臭氧氧化91
4-2-2-2 活性碳吸附93
4-2-2-3 臭氧氧化與活性碳吸附水質特性比較95
4-2-3 離子交換樹脂98
4-2-3-1 離子交換試驗98
4-2-3-2 水質特性之比較101
4-2-4 整體污染物去除效果及再利用方向103
4-2-4-1 整體污染物去除率103
4-2-4-2 再利用之方向104
第五章 結論與建議108
5-1 結論108
5-2 建議109
第六章 參考文獻110
Abdessemed, D., Nezzal, G., and Aim, R.B.“Treatment of Wastewater by Ultrafiltration .” Desalination. Vol.126, No.1-3, pp.1-5, 1999.Afonso, M. D., and Pinho, M. N. ”Membrane Separation Processes in the Pulp and Paper Industry.” Desalination. Vol. 85, pp.53-58, 1991.Angelakis, A.N., Marecos Do Monte, M.H.F.,Bontoux, L.,Asano, T. “The status of wastewater reuse practice in the Mediterranean basin: need for guidelines.” Wat. Res. Vol.33, No.10, pp.2201-2217, 1999.Asano, T., Maeda, M., and Takaki, M. “Wastewater Reclamation and Reuse in JAPAN:Overview and Implementation Examples.” Wat. Sci. Tech. Vol.34, No.11, pp.219-226, 1996.Bouwer, H.“Role of Groundwater Recharge in Treatment and Storage Wastewater for Reuse.”Wat. Sci. Tech. Vol. 24, No.9, pp.295-302, 1991.Teodosiu, Carmen C., Kennedy, Marie, D., Van Straten, Henry A., and Schippers, Jan C., “Evaluation of Secondary Refinery Effluent Treatment using Ultrafiltration Membrane.” Wat. Res. Vol. 33, No. 9, pp.2172-2180, 1999.Crozes,G., Anselme, C., and Mallevialle,J. “ Effect of Adsorption of Organic Matter on Fouling of Ultrafiltration Membranes.” J. Membrane. Sci.Vol. 88, pp.61-77, 1993.Fähnrich, A.., Mavrov, V., and Chmiel, H., “Treatment of Low-Contaminated Water from the Food Industry to Produce Water of Drinking Quality for Reuse.” Desalination. Vol.113, NO.2-3, pp.197-203, 1997.Fähnrich, A., Mavrov, V., and Chmiel, H., “Membrane Processes for Water Reuse in the Food Industry.” Desalination. Vol. 119, No.1-3, pp.213-216, 1998.Fridler, E., “The Jeezrael Valley Project for Wastewater Reclamation and Reuse, Israel.” Wat. Sci. Tech. Vol. 40, No.4-5, pp.347-354, 1999.Gadani, V., Irwin, R., and Mandra, V. “Ultrafiltration as a Tertiary Treatment:Joint Research Program on Membranes.” Desalination. Vol.106, No.1-3, pp.25-29, 1996.Ghayeni, S., Madaeni, S., and Schneider, R., “Aspect of Microfiltration and Reverse osmosis in Municipal.” Desalination. Vol.106, No.1-3, pp.47-52, 1996.Haarhaff, J., and Merwe, B.V., “Twenty-Five Years of Wastewater Reclamation Windhoek, Nanibia.” Wat. Sci. Tech. Vol.33, No.10-11, pp.25-35, 1996.Hanemaaijer, J.H., T.Robbertsen., TH.Van Den Boomgaard., and J.W.Gunnink. “Fouling of Ultrafiltration Membranes. The Role of Protein Adsorption and Salt Precipitation.” J. Membrane Sci. Vol. 40, pp.199-217, 1989.Jekel, M., “Effect and Mechanisms Involved in Preoxidation and Particle Separation Process.” Wat. Sci. Tech. Vol.37, No.10, pp.1-7, 1998.Jolis, Domènec., Campana, Rochelle., Hirano, Robin., Pitt, Paul., and Mariñas, Benito. “Desalination of Municipal Wastewater for Horticultural Reuse:Process Description and Evaluation.” Desalination. Vol. 103, No.1-2, pp.1-10, 1995.Kim, K.J., Sun,P., Chen, V., Wiley,D., and Fane,A.”The Cleaning of Ultrafiltration Membrane Fouled by Protein.” J. Member. Sci. Vol. 80, pp.241-249, 1993.Kleiser, G and Frimmel, F. “Removal of precursors for disinfection by-products (DBPs) ─ differences between ozone- and OH-radical-induced oxidation.” The Science of the Total Environment. Vol. 256, No.1, pp.1-9, 2000.Koyama, K., Kimura, K., Hashida, I., and Nishimura, M.”Rejection of Phenolic Derivatives in Aqueous Solution by an Interpolymer Anionic Composite Reverse Osmosis Membrane.” J. Appl. Poly. Sci. Vol. 29, No. 5, pp.2929- 2935,1984.Le, M.S., and J.A.Howell. “Alternative Model for Ultrafiltration.” Chem. Eng. Des. Vol. 62, pp.373-380, 1984.Lo Tan and Gary L. Amy. “Comparing Ozonation and Membrane. Separation Color Removal and Disinfection By-product Control.”Journal AWWA. May. 1991.Mujeriego, R., and Asano, T. “The Role of Advanced Treatment in Wastewater Reclamation and Reuse.” Wat. Sci. Tech. Vol. 40, No. 4-5,pp.1-9, 1999.Olivieri ,V.P.,et al., “Continuous Microfiltration of Surface Water.”Proceedings of the AWWA . 1991.Papadopoulos, I. “A Present and Perspective use of Wastewater for irrigation in the Mediterranean basin.” In IAWQ 2nd Int. Symposium on Wastewater Reclamation and Reuse. Vol. 2, pp.735-746, 1995.Peng, J., Stevens, D.K., and Xinguo, Y.“A Pioneer Project of Wastewater Reuse in CHINA.” Wat. Sci. Tech. Vol. 29, No. 1, pp.357-363, 1995.Peskin, A. P.,M.K.Ko., and J.J.Pellegrino.“There Layer Model for Characterizing Ultrafiltration Membranes.” J. Membrane Sci. Vol. 60, pp.195-206, 1991.Rautenbach, R., and Albrecht, R.“Membrane Processes.” John. Wiley. Sons.1989.Rautenbach, R., and Mellis, D. “Hybrid Processes Involving Membranes for the Treatment of Highly Organic/Inorganic Contaminated Waste Water.” Desalination. Vol.101, No.2, pp.105-113, 1995.Roeleveld, P.J., and Maaskant, W.“A Feasibility Study on Ultrafiltration of Industrial Effluents.” Wat. Sci. Tech. Vol. 39, No. 5, pp.73-80, 1999.Boerlage, Siobhàn F.E., Kennedy, Maria D., Aniye, Meseret Petros., Abogrean, Elhadi M., Dima E.Y.Et-Hodali., Zeyad S.Tarawmeh and Jan C.Schippers. ”Modified Fouling IndexUltrafiltration to Compare Pretreatment Processes of Reverse Osmosis Feedwater.”Desalination. Vol.131, No.1-3, pp. 201-214, 2000.Sivakumar, M., Malaisamy, R., Sajitha, C.J., Mohan, D., Mohan, V.,and Rangarajan,R.”Ultrafiltration Application of Cellouse Acetate- Polyurethane Blend Membrane.”European Polymer Journal.Vol.35, No.9 ,pp.1647-1651, 1999.Staehelin, J., and Hoigné, J. “Decomposition of Ozone in the Presence of Organic Solutes Acting as Promoters and Inhibitor of Radical Chain Reactions.” Environmental Sci. Tec. Vol.19, pp.1206-1213, 1985.Tchobanoglous, George., Darby, Jeannie., Bourgeous, Keith., McArdle, John., Genest, Paul., and Tylla, Michael. “Ultrafiltration as an Advanced Tertiary Treatment Process for Municipal Wastewater.” Desalination. Vol.119, No. 1-3, pp. 315-322, 1998.Van Hoof, S.C.J.M., Hashim, A., and Kordes, A.J. “The Effect of Ultra filtration as Pretreatment to Reverse Osmosis in Wastewater Reuse and Seawater Desalination Applications.” Desalination. Vol.124, No.1-3, pp.231-242, 1999. Zaidi,A, et al., “Ultra and Nano-filtration in Advanced Effluent Treatment Schemes for Pollution Control in Pulp and Paper Industry.”Wat. Sci.Tec. Vol.25, No.10, pp.263-276, 1992.于仰聖、顧洋等,“以逆滲透膜法處理熬合銅廢水之研究”,第十八屆廢水處理研討會論文集,pp. 797-806, 1993。中國技術服務社工業污染防治中心編著,”工業減廢技術手冊-造紙工業“,經濟部環保署工業減廢聯合輔導小組發行,1993。中國技術服務社工業污染防治技術服務團編著,”工業污染防治實例彙集“,經濟部工業局發行,1996。李俊德等,“食品廢水回收處理再利用技術之可行性研究”,第二十四屆廢水處理研討會論文集,pp.843-846,1999。林正芳,”薄膜程序於水處理的應用”,土木水利月刊第二十六卷第四期二月號,p p . 27-36,2000。周振瑞,”離子交換樹脂”,石油季刊第十二卷第四期,p p.35-43 ,1976。陳重男等,“臭氧應用於生活污水回收再利用之研究”,第二十五屆廢水處理研討會論文集,pp. 603-608, 2000。陳重男等,“以單一膜管試驗(SEBST)評估極微濾膜在自來水處理效能之研究”,第二十五屆廢水處理研討會論文集,2000。陳錫楨,”造紙業”,產業經濟第235期,pp.8-14,2001。焦自強、曾再微,”分離薄膜淺談”,化工技術第三卷第四期,pp.140-153,1995。葉宣顯等,“桌上型快速薄膜試驗設備評估NF薄膜在表面水處理上之運用”,第二十四屆廢水處理研討會論文集, pp.887-892,1999。葉宣顯,“前處理對NF薄膜程序影響之研究”,第十七屆自來水研究發表會報告集,pp.231-243,2000。劉茱娥,“逆滲透”,膜分離技術,化學工業出版社,1998。劉源隆,”水廠離子交換樹脂有機物污染及其原理”,台電工程月刊第426期,二月號,pp.18-24,1984。劉馨遠等,“水處理工程理論與應用”,科技圖書股份有限公司,1995。經濟部水利處,www.wra.gov.tw,2001。盧文章、鄒易達譯,“地中海盆地國家廢水回收再利用實施現況(下),用水回收開源良方”,節約用水季刊第18期,2002。闕裕川,“不再讓日本製紙業專美於前,萬有紙廠成尼髡角G級廢水再回收”,節約用水季刊第3期,2001。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top