跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邢傅清
研究生(外文):Fu-Ching Hsing
論文名稱:污泥膠羽強度對壓榨脫水之影響探討
論文名稱(外文):The study of the effect of sludge floc strength on the expression dewatering efficiency
指導教授:吳志超
指導教授(外文):Chih-Chao Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:119
中文關鍵詞:污泥膠羽強度壓榨脫水過濾壓密蠕動係數
外文關鍵詞:consolidationfiltrationfloc strengthexpression dewateringsludgecreeping factor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要在探討污泥膠羽強度對於壓榨脫水程序之影響。文中以厭氧消化生物污泥作為研究對象,並以一壓榨唧筒濾室進行污泥之壓榨脫水,採用之壓力為150、350、550及800 psi。研究於進行污泥高分子調理後利用一同軸旋轉槽進行攪拌破壞試驗以分析污泥之膠羽強度值(Floc Strength;FS);實驗結果指出膠羽強度會隨著高分子調理劑量之增加而增強。就過濾階段而言,提高膠羽強度,可明顯降低SRF及過濾時程(FT)。然當高膠羽強度提高至3.85時,提高壓榨壓力已無助於FT之縮短及SRF之改善;當高至4.25時,無論壓力使用為何,均出現最低之SRF值。就壓密階段而言,隨著膠羽強度增加,蠕動係數η(creeping factor)及壓密脫水效率皆會隨之提升,且在FS為4.25時均為最高。此外,當FS小於3.57時,二階壓榨比B值會隨著膠羽強度之提升而下降,然當FS超過3.57後,B值則無明顯變化趨勢。根據最佳脫水效率之出現決定於最大蠕動係數η值而非最低之B值,故知粒子的蠕動錯位程度乃為二階壓榨之主要作用機制。
整體脫水效率亦隨著膠羽強度之增加而提升。濕濾餅、壓密餅含水率及結合水含量大致隨著膠羽強度之增加而下降,在FS達3.85後,其值皆變化不大。此外,就壓力之影響而言,無論膠羽強度為何,壓榨壓力提升至550 psi時即可大幅提升整體脫水效率,過高之壓力不但助益有限且徒增成本。
This work mainly focused on the study of the effects of the sludge floc strength (FS) on the expression dewatering process. The anaerobic-digested sludge was used as the test sludge and dewatered by the expression process with the pressure of 150, 350, 550 and 800 psi individually. Couette Flocculator was applied as the mixer for sludge conditioned with polymer and then performed the breaking test for measuring the floc strength (FS) of conditioned sludge. The experimental results showed that FS of test sludge increased with the addition of polymer. For the filtration stage of expression, both the SRF (Specific Resistance to Filtration) and FT(Filtration Time)of the conditioned sludge apparently decreased with the increase of FS. Increasing the expression pressure did not enhance any improvement on FT and SRF when FS was increased to 3.85. As the FS further up to 4.25, the lowest SRF was all produced within the four expression pressures used. To the consolidation stage of expression, the particle creeping factor (η) and the dewatering efficiency of consolidation both increased with the FS and both reached the maximum value while FS increased to 4.25. Further, the fraction of moisture removed by the secondary consolidation (B) decreased with the increase of FS when the FS under 3.57 and then presented an insignificant variation while FS up to 3.57. The creeping behavior degree of particles is thought to be the dominant mechanism of secondary consolidation according to the determination of maximumηvalue but not lowest B value, which result in the occurrence of the optimal dewatering efficiency. By the way, for the over-all parameters, the increasing FS can promote the whole-stage dewatering efficiency and reduce the moisture content of filtered cake, consolidated cake and the bound water content. However, there were tiny advance on these three parameters while the FS reached up to 3.85. Furthermore, for the effect of expression pressure, 550 psi can greatly improve the whole-stage dewatering efficiency for any condition of FS. Further pressure did not provide improvement anymore.
目 錄
誌 謝I
中文摘要II
英文摘要III
目 錄IV
表 目 錄VII
圖 目 錄VIII

第一章 緒論1
1.1 研究緣起1
1.2 研究動機與目的2
第二章 文獻回顧4
2.1 污泥脫水及壓榨操作4
2.1.1 過濾與壓榨之分界8
2.1.2 壓榨理論與機制探討11
2.1.3 污泥之壓榨脫水16
2.2 污泥之膠羽強度18
2.2.1 膠羽強度之定義及分析方法18
2.2.2 化學或高分子調理劑對膠羽強度之影響22
2.2.3 污泥膠羽強度與脫水效率之相關性24
第三章 研究方法27
3.1 研究內容27
3.1.1 膠羽強度、壓榨壓力對過濾暨壓密分界點及過濾階段之影響28
3.1.2 膠羽強度、壓榨壓力對壓密階段脫水效率之影響29
3.1.3 整體脫水效率之研究探討29
3.2 實驗流程30
3.3 實驗方法32
3.3.1 污泥之高分子調理32
3.3.2 污泥之膠羽結構分析33
3.3.3 污泥之脫水性分析36
3.4 實驗材料與儀器設備41
第四章 結果與討論50
4.1 過濾暨壓榨階段分界點及過濾階段之研究50
4.1.1 高分子絮凝劑量、污泥之CST值與膠羽強度之關係51
4.1.2 過濾暨壓榨階段分界點之變化54
4.1.3 過濾階段SRF值之變化58
4.1.4 濾餅壓縮係數之變化60
4.2 壓密階段脫水效率之影響探討61
4.2.1 固定操作壓力下,不同膠羽強度對於壓密階段之影響探討61
4.2.2 相同膠羽強度下,不同操作壓力對於壓榨脫水之影響77
4.3 壓榨操作之整體脫水效率影響探討82
4.3.1 整體脫液曲線之表現82
4.3.2 濾餅含水率之變化86
4.3.3 結合水含量之變化89
4.3.4 T85與過濾時程(FT)之關係92
第五章 結論與建議95
5.1 結論95
5.2 建議97
參考文獻98
附 錄105
Bache D. H. and Al-Ani S. H.(1989)Development of a system for evaluating floc strength. Water Science and Technology, 21, 529-537.Bache D. H., Rasool E., Moffat D. and McGilligan F. J.(1999)On the strength and character of alumino-humic flocs. Wat. Sci. Tech., 40(9), 81-88.Britt-Marie Wilén, Keiding Kristian and Nielsen P. H. (2000) Anaerobic deflocculation and aerobic reflocculation of activated sludge. Wat. Res., 34, 3933-3942.Britt-Marie Wilén, Nielsen Jeppe Lund, Keiding Kristian, Nielsen P. H.(2000)Influence of microbial activity on the stability of activated sludge flocs. Colloids and Surfaces B: Biointerfaces, 18, 145-156.Chang I. L. and Lee D. J. (1996) Expression dewatering of mixed sludges. Spectroscopy Lett, 29, 1659.Chang I. L., Chu C. P. and Lee D. J.(1997a)Filtration followed by expression characteristics of polymer flocculated clay slurries. J. Colloid Interface Sci., 185, 335-342.Chang I. L., Chu C. P., Lee D. J. and Huang Chihpin(1997b)Expression dewatering of alum-coagulated clay slurries. Environ. Sci. Technol., 31, 1313-1319.Chang I. L., Chu C. P. and Lee D. J. (1997c) Electrokinetic property effects on expression characteristics of clay sludge. J. Envir. Sci. Hlth A., 32, 1591.Chang I. L. and Lee D. J.(1998)Ternary expression stage in activated sludge dewatering. Wat. Res., 32, 905-914.Christensen, G. L. and Dick, R. I. (1985) Specific resistance measurement: non-parabolic data. J. Envir. Eng. ASCE, 111, 243.Coulson, J. M., Richardson, J. F., Backhurst, J. R. and Harker, J. H. (1990) Chemical Engineering, Particle Technology and Separation Process. 4th ed., Butterworth-Heinemann, Jordan Hill, UK.Chu C. P. and Lee D. J. (1998) Expression dewatering of sludges: effects of consolidation pressures. Journal of Chinese Institute of Environmental Engineering, 8, 1.Chu C. P. and Lee D. J.(1999)Three stages of consolidation dewatering of sludges. J. Environ. Eng., Oct., 959-965.Chu C. P., Lee D. J. and C. Huang(1998)The role of ionic surfactants in compression dewatering of alum sludge. J. Colloid Interface Sci., 206, 181-188.Eriksson, L. and Alm, B. (1993) Characterization of activated sludge and conditioning with cationic polyelectrolytes. Wat. Sci. Tech., 28(1), 203-212.Ellis C. E. and Glasgow L. A. (1999) Deformability and breakage of flocs. Advances in Environmental Research, 3(1), 15-27.Francois R. (1987) Ageing of aluminium hydroxide flocs. Wat. Res., 21, 523-531.Glasgow L. A. (1989) Effects of the physiochemical environment on floc properties. Chemical Engineering Progress, 85, 51-55.Hannah S.A., Cohen J. M. and Robeck G. G. (1967) Measurement of floc strength by particle counting. J. AWWA., 59, 843-858.Kamst G. F., Bruinsma O. S. L. and de Graauw J. (1997a) Solid-phase creeping during the expression of palm-oil filter cakes. AIChE J., 43, 665-672.Kawasaki K., Matsuda A. and Murase T. (1990) The effects of freezing and thawing process on the expression characteristics and final moisture content of excess activated sludge. Kagaku Kogaku Ronbunshu, 16, 1241.Kawasaki K., Matsuda A. and Mizukawa Y. (1991) Compression characteristics of excess activated sludges treated by freeze and thawing process. J. Chem. Engng. Japan, 24, 743.Keiding Kristian and Nielsen P. H. (1997) Desorption of organic macromolecules from activated sludge :effect of ionic composition. Wat. Res., 31, 1665-1672.Koo E. C. (1942) Expression of vegetable oils. Ind. Eng. Chem., 34, 342.Kormendy I. (1964) A press theory with validating experiments on apples. J. Food Science, 29, 631.Kranenburg C. (1999) Effects of floc strength on viscosity and deposition of cohesive sediment suspensions. Continental Shelf Research, 19, 1665-1680.Leentvaar J. and Rebhun M. (1983) Strength of ferric hydroxide flocs. Wat. Res., 17, 895-902.Lee C. H. and Liu J. C. (2001) Sludge dewaterability and floc structure in dual polymer conditioning. Advances in Environmental Research, 5, 129-136. Mikkelsen Lene Haugaard (2001) The shear sensitivity of activated sludge relations to filterability, rheology and surface chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 182, 1-14.Mikkelsen L. H., Gotfredsen A. K., Agerbæk M. L., Nielsen P. H. and Keiding K. (1996) Effects of colloidal stability on clarification and dewatering of activated sludge. Wat. Sci. Tech., 34, 449-457.Muhle K. and Domasch K. (1991) Stability of particle aggregates in flocculation with polymers. Chem. Eng. Process, 29, 1.Moudgil B. M. and Vasudevan T. V. (1989) Evaluation of floc properties for dewatering of fine particle suspensions. Minerals and Metallurgical Processing.Parker D. S., Kaufman W. J. and Jenkins, D. (1971) Physical conditioning of activated sludge flocs. J Water Pollut. Control Fed., 43, 1817-1833.Parker D. S., Kaufman W. J. and Jenkins D. (1972) Floc breakup in turbulent flocculation processes. J. San. Eng. Div. Am. Soc. Civ. Eng., 98, 79-99.Nielsen P. H. and Keiding Kristian (1998) Disintegration of activated sludge flocs in presence of sulfide. Wat. Res., 32, 313-320.Shirato M., Murase T., Kato H. and Fukaya S. (1967) Expression under constant pressure. Kagaku Kogaku, 31, 1125-1130 (in Japanese).Shirato M., Murase T., Tokunaga A. and Yamada O. (1974) Calculations of consolidation period in expression operations. J. Chem. Eng. Japan, 7, 229-231.Shirato M., Murase T., Hayashi N. and Fukushima T. (1977) Constant pressure expression of solid-liquid mixtures with medium resistance. J. Chem. Eng. Japan, 10, 154-159.Shirato M., Murase T., Atsumi K., Nagami T. and Suzuki H. (1978) Creep constants in expression of compressible solid-liquid mixtures. J. Chem. Eng. Japan, 11, 334-336.Shirato M., Murase T., Atsumi K., Aragaki T. and Noguchi T. (1979) Industrial expression equation for semi-solid materials of solid-liquid mixture under constant pressure. J. Chem. Eng. Japan, 12, 51-56.Tambo N. and Hozumi H. (1979) Physical characteristics of flocs-Π. Strength of floc. Wat. Res., 13, 421-427.Tiller F. M. and Green T. C. (1973) Role of porosity in filtration IX: skin effect with highly compressible materials. AIChE J., 19, 1266-1269.Tiller F. M. and Yeh C. S. (1987) The role of porosity in filtration. Part XI: filtration followed by expression. AIChE J., 33, 1241-1256.Tiller F. M. and Kwon J. H. (1998) Role of porosity in filtration XIII: unexpected behavior of highly compactible cakes. AIChE J., 44, 2159-2167.Tiller F. M., Hsyung N. B. and Cong D. Z. (1995) The role of porosity in filtration. Part XII: filtration with sedimentation. AIChE J., 41, 1153-1164.Tsang K. R.(1989)Moisture distribution in wastewater sludges. Ph.D. Dissertation, Duke University, Durham, N.C.Vesilind P. A.(1979)Treatment and disposal of wastewater sludge. Ann Arbor, Mich.Wu C. C., Huang Chihpin and Lee D. J.(1997)Effects of polymer dose on alum sludge dewaterability characteristics and physical properties. Colloids Surf. A., 122, 89-96.Wu C. C., Huang Chihpin and Lee D. J.(1998)Bound water content and water binding strength on sludge flocs. Wat. Res., 32, 900-904.Wu C. C., Lee D. J. and Huang Chihpin(2000)Determination of the optimal dose of polyelectrolyte sludge conditioner considering particle sedimentation effects. Advances in Environmental Research, 4, 245-249.Wu C. C., Wu J. J. and Huang R. Y.(2002)Floc strength and dewatering efficiency of alum sludge. Advances in Environmental Research.Wen H. J. and Lee D. J.(1998)Strength of polymer flocculated clay flocs. Advances in Environmental Research, 2, 390-397.Wu X., Itou H., Ono K. and Nagase Y. (1996b) Consolidation analysis: an approximation theory of consolidation. J. Soc. Powder Tech. Japan, 33, 10 (in Japanese).Yeh S. H. (1985) Cake Deliquoring and Radial Filtration. Doctoral Dissertation, University of Houston, Houston, Texas, USA.吳志超(1997)「以高分子調理鋁鹽污泥對其脫水性影響之研究」,博士論文,交通大學,新竹。陳慶彬(1994)「濾餅定壓壓榨操作變因之探討及兩成份粒子壓榨」,碩士論文,臺灣大學,臺北。張文承(1995)「同軸迴轉混凝槽之膠羽成長及膠羽密度之探討」,碩士論文,中原大學,桃園。張怡隆(1996)「污泥壓榨特性之研究」,碩士論文,臺灣大學,臺北。朱敬平(1999)「污泥膠羽結構、脫水性、水份分佈、與熱分解特性研究」,碩士論文,臺灣大學,臺北。黃瑞益(2000)「調理攪拌強度對污泥膠羽強度及後續脫水之影響」,碩士論文,逢甲大學,台中。洪嘉祥(2000)「熱調理/調理劑調理對污泥流變性質與脫水效率之相關研究」,碩士論文,臺灣大學,臺北。林玉君(2000)「以混凝-絮凝處理高濁度原水之研究」,碩士論文,臺灣科技大學,臺北。歐陽嶠暉(1992)「下水道工程學」,長松出版社,增訂版,臺北。呂維明,呂文芳(1994)「過濾技術」,高立圖書有限公司,臺北。依日光(1995)「污泥處理工學」,復漢出版社,臺南。渥美邦夫(1980)「定壓壓搾脫水之工學的研究」,名古屋大學工學部化學工學科,名古屋,日本。賴志彥,劉志成(2001)「雙重調理應用於鋁鹽污泥之研究」,第二十六屆廢水處理技術研討會論文集。黃瑞益,吳志超(2000)「高分子調理劑對鋁鹽污泥膠羽強度及後續脫水效率之影響」,第十五屆廢棄物處理處理技術研討會論文集,5-1~5-6。陳兩全,陳兩全,簡昭萸,朱敬平,李篤中,謝國煌,李祈煌,劉志成(2001)「造紙業污泥之調理與壓榨脫水」,第十六屆廢棄物處理處理技術研討會論文集,4-14。財團法人中國技術服務社(1988)工業污染防制手冊 [14]—污泥脫水處理,經濟部工業局工業污染防制工業污染防制技術服務團,臺北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top