跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉梅
研究生(外文):Liu, Mei
論文名稱:環丙烯類化合物之合成與化性研究
論文名稱(外文):The Synthesis and Chemistry of Cyclopropenes
指導教授:李國安李國安引用關係
指導教授(外文):Lee, Gon-Ann
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:環丙烯環丙烯類13-融合化合物參環化合物
外文關鍵詞:CyclopropeneCyclopropenes13-fused compoundtricyclic compound
相關次數:
  • 被引用被引用:2
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1-溴-2,2-二氯-3-三甲基矽基環丙烷 (36) 與甲基鋰作用會生成1-氯-3-三甲基矽基環丙烯 (38),以furan作為trapping reagent,可得到兩種產物39和40,若將furan 改成DPIBF,則只會得到唯一產物45,顯示立體選擇性變好了。分別將化合物39、40和45與氟離子反應,所生成之中間產物8-氧-參環[3.2.1.02,4]辛-2,6-雙烯 (41, 42) 和6,7-苯并-1,5-苯基-8-氧參環[3.2.1.02,4]辛-2-烯 (46) 為含氧的1,3-參環環丙烯類化合物,即使在低溫下亦會快速異構化成羰基化合物,藉由不同的取代基可判別並證實其進行diradical mechanism。
1-溴-2,2-二氯-3-三甲基矽基環丙烷 (36) 為合成1,3-參環環丙烯類化合物之重要起始物,但由於環丙烷類化合物在結構上的限制,使得其反邊取代基不在共平面上,因而進行同邊脫除反應。由於氟離子與起始物36反應時,有離去溴或是氯取代基兩種不同的脫除可能性,但離去氯取代基所生成的中間產物1-氯-3-溴環丙烯 (48) 較為穩定,因此,化合物36在進行脫除反應時,是行同邊脫除反應,且可知對於36而言,氯取代基是為一較好的離去基。將化合物36與氟離子反應會得化合物48,並以DPIBF trapped可得產物50和51,我們推測因化合物52並不安定,會自行開環,進而水解,才得到醛類產物50和51。

The vacuum gas-solid reaction (VGSR) techneque was employed to convert 2-chloro-3-trimethylsilyl-8-oxatricyclo[3.2.1.02,4]oct-6-ene (39, 40) into 8-oxatricyclo[3.2.1.02,4]octa-2,6-diene (41, 42) with tetrabutyl- ammonium fluoride at 25 ℃ and 20 mtorr which quickly rearranged to benzaldehyde. 6,7-benzo-2-chloro-1,5-diphenyl-3-trimethylsilyl-8-oxa- tricyclo[3.2.1.02,4]octane (45) which was the only adduct when the important precursor of 1,3-fused tricyclic cyclopropenes, 1-bromo-2,2- dichloro-3-trimethylsilyl-cyclopropane (36), was reacted with methyl- lithium followed by treating with the bulkier trapping reagent diphenylisobenzofuran (DPIBF) gave phenyl-(4-phenyl[1]naphthyl)- ketone (47) as the sole adduct under the same VGSR condition. According to the results, we proposed that the rearrangement is via diradical mechanism.
Due to of the natural restraint to the structure of cyclopropane, its anti-substituents could not achieve periplanar conformation. Therefore, 36 cannot achieve anti-elimination, and favored syn-elimination. When 36 was reacted with fluoride ion, it was possible to leave bromide or chloride substituent. But 36 was eliminated TMSCl to form a more stable intermediate, 1-chloro-3-bromocyclopropene (48). We know that the chloride substituent of 36 was a better leaving group. When compound 48 was trapped with DPIBF, two adducts 50 and 51 were obtained. We didn’t observe compound 52 and 53, but we supposed that both of the adducts came from compound 52 by opening ring and hydrolyzing.

目錄
英文摘要 ……………………………………………………………………………...Ⅰ
中文摘要 ……………………………………………………………………………...Ⅱ
一、 緒論 …………………………………………………….………………….……1
Ⅰ、前言……………………………………………………………………………..…1
Ⅱ、環丙烯的化性 ……………………………………………………………………2
Ⅲ、環丙烯的合成 ……………………………………………………………………3
Ⅳ、1,3-融合雙環環丙烯類化合物之合成 ………………………………………….5
Ⅴ、1,2-融合參環環丙烯化合物之合成 …………………………………………….13
Ⅵ、1,3-融合參環環丙烯化合物之合成 ……………………………………………..14
二、結果與討論 ……………………………………………………………………….18
1,3-融合參環環丙烯類化合物之合成與化性研究 ……………………………….18
Ⅰ、6,7-benzo-1,5-diphenyl-8-oxatricyclo[3.2.1.02,4]oct-2-ene (46) 之合成與化性研究 ……………………………………………………………………..……….20
(1). 合成1-bromo-2,2-dichloro-3-trimethylsilylcyclopropane (36) …………..………20
(2). 合成6,7-benzo-2-chloro-1,5-diphenyl-3-trimethylsilyl-8-oxatricyclo[3.2.1.02,4]oct-
6-ene (45) …………………………………………………………………………21
(3). 6,7-benzo-1,5-diphenyl-8-oxatricyclo[3.2.1.02,4]octa-2-ene (46) 之合成與化性研究 ……………………………………………………………………………...25
Ⅱ、化合物36與F- salt的合成研究 ………………………………………………...27
化合物36與F- salt的反應研究 ………………………………………………..29
三、結論 ……………………………………………………………………………….34
四、實驗部分 ………………………………………………………………………….36
五、參考文獻 …………………………………………………………………….……46
光譜數據 ……………………………………………………………………………...49

1. Markownikoff, W.; Krestownikoff, A. Liebigs Ann. Chem. 1881, 208, 334.
2. Freund, A. Monatsh. 1882, 3, 625.
3. Dem’yanov, N. Y.;Doyarenko, M. N. Bull. Acad. Sci. Russ. 1922, 16, 297.; Chem. Abstract 1926, 20, 2988; Chem. Ber. 1925, 58, 220; Bull. Acad. Sci. SSSR. 1929, 653; Chem. Abstr. 1930, 24, 1848.
4. (a) Nunn, J. R. J. Chem. Soc. 1952, 313.
(b) Macfarlane, J. J.; Shenstone, F. S.; Vickery, J. R. Nature 1957, 179, 830.
5. (a) Carter, F. L.; Frampton, V. L. Chem. Rev. 1964, 64, 497.
(b) Closs, G. L. Adv. Alicyclic Chem. 1966, 1, 53.
6. Wiberg, K. B. Structures, Energies and Spectra of Cyclopropanes. In The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed. Wiley: New York, 1987; Chapt. 1.
7. (a) Liebman, J. F.; Greenberg, A. Chem. Rev. 1976, 76, 311.
(b) Halton, B.; Banwell M. B. Cyclopropenes. In The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed. Wiley: New York, 1987; Chapt. 21.
(c) Billups, W. E.; Haley, M. M.; Lee, G.-A. Chem. Rev. 1989, 89, 1147.
8. Dowd, P.; Gold. A. Tetrahedron Lett. 1969, 85.
9. Baird, M. S.; Buxton, S. R.; Whitley, J. S. Tetrahedron Lett. 1984, 25, 1509.
10. Lee, G.-A.; Shiau, C.-S.; Chen, C.-S.; Chen, J. J. Org. Chem. 1995, 60, 3565.
11. Lee, G.-A.; Chen, J.; Chen, C.-S.; Shiau, C.-S.; Cherng, C.-H., J. Chin. Chem. Soc.
1996, 43, 297.
12. Lee, G.-A.; Chen, C.-S. Tetrahedron Lett. 1997, 38, 8717.
13. Lee, G.-A.; Chang, C.-Y. Tetrahedron Lett. 1998, 39, 3013.
14. Billups, W. E.; Lee, G.-A.; Arney, B. E. Jr.; Whitmire, K. H. J. Am. Chem. Soc.
1991, 113, 7980.
15. (a) Breslow, R.; Peterson, R. J. Am. Chem. Soc. 1960, 82, 4426.
(b) Dehmlow, E. V. Tetrahedron Lett. 1965, 2317.
(c) Breslow, R.; Chu, W. J. Am. Chem. Soc. 1974, 96, 4702.
(d) Weyerstahl, P., in “Chemistry of the Functional Groups”, Suppl. D, Vol. 2 (Patai, Eds. S.; Rappoport, Z.), Wiley, Chichester, 1983, pp. 1451-1497..
16. (a) Closs, G. L.; Krantz, K. D. J. Org. Chem. 1966, 31, 638.
(b) Zimmerman, H. E.; Hovey, M. C. J. Org. Chem. 1979, 44, 2331.
17. D’yachenko, A. I.; Abramova, N. M.; Rudashevskaya, T. Yu.; Nesmeyanova, O. A.; Nefedov, O. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 1193; Chem. Abstract 1983, 97, 109579.
18. Masuyama, Y.; Ueno, Y.; Okawara, M. Chem.Lett. 1979, 835.
19. Alder, K.; Kaiser, K.; Schumacher, M. Ann. Chim. 1957, 602, 80.
20. Billups, W. E.; Lin, L.-J.; Arney, B. E., Jr.; Robin, W. A.; Casserly, E. W. Tetrahedron Lett. 1984, 25, 3935.
21. Chan, T. H.; Massuda, D. Tetrahedron Lett. 1975, 16, 3383.
22. Eicher, T. H.; Böhm, S. Chem. Ber. 1976, 76, 311.
23. (a) Suda, M. Tetrahedron Lett. 1980, 21, 4355.
(b) Wittig, G.; Otten, J. Tetrahedron Lett. 1963, 4, 601.
(c) Magid, R. M.; Welch, J. G. J. Am. Chem. Soc. 1968, 90, 5211.
24. (a) Baird, M. S.; Nethercott, W. Tetrahedron Lett. 1983, 24, 605.
(b) Baird, M. S.; Hussain, H. H.; Nethercott, W. J. Chem. Soc. Perkin Trans. I 1986, 1845.
25. (a) Stierman, T. J.; Johnson, R. P. J. Am. Chem. Soc. 1983, 105, 2492.
(b) Stierman, T. J.; Johnson, R. P. J. Am. Chem. Soc. 1985, 107, 3971.
26. Kawase, T.; Oda, M. Tetrahedron Lett. 1982, 23, 2677.
27. Lee, G.-A.; Chen, J.; Chen, C.-S.; Shiau, C.-S.; Cherng, C.-H. J. Chin. Chem. Soc.
1996, 43, 297.
28. Parker, R. H.; Jones, W. M. Tetrahedron Lett. 1984, 25, 1245.
29. March, J. In Advanced Organic Chemistry: Reactions, Mechanisms, and Structure fourth edition, Ed.Wiley : New York, 1992, pp.984-989..
30. (a) Lee, G.-A.; Shiau, C.-S.; Chen, C.-S.; Chen, Jay J. Org. Chem. 1995, 60, 3565.
(b) Lee, G.-A.; Chen, Calvin P.-K.; Chen, M.-Y. J. Chin. Chem. Soc. 1998, 45, 381.
31. (a) Shields, T. C.; Gardner, P. D. J. Am. Chem. Soc. 1967, 89, 5425.
(b) Billups, W. E.; Rodin, W. A.; Haley, M. M. Tetrahedron 1988, 44, 1305, and references cited therein.
32. Chan, T. H.; Massuda, D. Tetrahedron Lett. 1975, 16, 3383.
33. A term first used by Lacombe, S.; Gondeau, D.; Cabioch, J.-L.; Pellerin, B.; Denis,
J.-M.; Pfister-Guillouzo, G. J. Am. Chem. Soc. 1988, 110, 6964.
34. Billups, W. E.; Lin, L.-J. Tetrahedron 1986, 42, 1575.
35. Lee, G.-A.;Huang, A. N.; Chen, C.-S.; Jann, Y.-C. J. Org. Chem. 1997, 62, 3355.
36. Lee, G.-A.; Lin, Y.-H.; Huang, A. N.; Li, Y. C.; Jann, Y.-C.; Chen, C.-S. J. Am. Chem. Soc. 1999, 121, 5328.
37. Lee, G.-A.; Chen, C.-S. Tetrahedron Lett. 1997, 38, 8717.
38. 陳啟盛﹐’’環丙烯類化合物之合成及其化性之研究’’﹐中華民國八十九年六月﹐私立輔仁大學化學研究所博士論文。
39. Deboer, C. D.; Wadsworth, D. H.; Perkins, W. C. J. Am. Chem. Soc. 1973, 95, 861.
40. (a) Billups, W. E.; Luo, M.; Lee, G.-A.; Chee, J.; Arney, B. E., Jr.; Wiberg, K. B.; Artis, D. R. J. Org. Chem. 1996, 61, 764.
(b) Padwa, A.; Blacklock, T. J. J. Am. Chem. Soc. 1980, 102, 2797.
(c) Zimmerman, H. E.; Bunce, R. A. J. Org. Chem. 1982, 82, 3377.
(d) Franck-Neumann, M.; Lomann, J. J. Tetrahedraon Lett. 1979, 20, 2379.
(e) Franck-Neumann, M.; Lomann, J. J. Angew. Chem., Int. Ed. Engl. 1977, 16, 323.
(f) Baird, M. S.; Buxton, S. R.; Whitley, J. S. Tetrahedraon Lett. 1984, 25, 5385.
41. Using HyperChem, Single Point, SemiEmpirical, molecule, PM3, Convergence
limit = 0.01, Iteration limit = 50, Acceelerate convergence = Yes, RHF Calculation: Singlet state Calculation, Number of electrons = 40, Number of Double Occupied Levels = 20, Charge on the System = 0, Total Orbitals = 38.
42. Jursic, B. S. Tetrahedraon Lett. 1997, 38, 1305.
43. Nelb, R, G.; Stille, J. K. J. Am. Chem. Soc. 1976, 98, 2834.
44. Boeckman, R. K.; Bruza, K. J. J. Org. Chem. 1979, 44, 4781.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top