跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐千琇
研究生(外文):Chien-Hsiu Hsu
論文名稱:柑橘潰瘍病菌LexA蛋白結合位置之確定
論文名稱(外文):Identification of the consensue sequence of LexA binding site in Xanthomonas campestris pv. citri
指導教授:楊美桂楊美桂引用關係
指導教授(外文):Mei-Kwei Yang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:柑橘潰瘍病菌LexA蛋白
外文關鍵詞:Xanthomonas campestris pathovarlexA-recA-recXLexA repressorSOS boxEMSALexA binding site
相關次數:
  • 被引用被引用:2
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
與DNA修補有關的lexA、recA與recX基因,在柑橘潰瘍病菌 (Xanthomonas campestris pv. citri) 呈lexA- recA- recX連續排列的特殊結構,同時也存在於十字花科黑腐病菌( X. c. pv. campestris ) 和水稻白葉枯病菌( X. oryzea pv. oryzae )等不同黃原桿菌中。藉由Electrophoretic mobility shift analysis (EMSA)分析,顯示X. c. pv citri的 LexA蛋白也可與X. c. pv. campestris 與 X. o. pv. oryzae之lexA與recA啟動子作用,作用後會抑制其表現,表示柑橘潰瘍病菌的LexA蛋白可跨過病原小種的界限,作用於不同的黃原桿菌。分析lexA基因之啟動子,發現一顛倒重複序列:5’-TTAGTAGTAATACTACTAA-3’,為LexA蛋白作用之所在。以定點突變法證實此對稱結構為LexA結合所必需。若將突變啟動子接上luxAB基因,並進行轉錄分析,發現lexA啟動子轉錄加強,表示LexA確定無法與突變的啟動子作用。此突變啟動子的轉錄,可促進LexA之表現量明顯增加,RecA則不易形成。表示lexA啟動子的突變,影響LexA蛋白的結合,lexA方得以啟動。recA與recX啟動子也有類似但不完全相同的序列,可為LexA蛋白所附著,但作用較弱,故知此一顛倒重複序列為LexA蛋白作用之重要序列。
Abstract
A Xanthomonas campestris gene cluster consisted of lexA, recA and recX genes was identified and characterized. Electrophoretic mobility shift analysis indicated that the LexA protein of X. c. pv. citri bind to the lexA and recA promoters of X. c. pv. campestris and X. oryzae. pv. oryzae and repress the Xanthomonas campestris recA gene, indicating that the X. c. pv. citri LexA protein was functional in different Xanthomonas campestris pathovars. It was confirmed that a symmetrical sequence of TTAGTAGTAATACTACTAA within the lexA promoter region is essential for the LexA protein binding by site-directed mutagenesis and electrophoretic mobility shift analysis. A lexA mutated promoter increased in the transcriptional and translational level, due to loss of the binding ability of the LexA protein. However, the LexA protein was able to bind to the similar sequences of the recA and recX promoters. It was suggested that the consensus sequence of LexA binding in X. c. pv. citri is TTAGTAGTAATACTACTAA.
目 錄
中文摘要 1
英文摘要 2
前言 3
材料與方法 8
一. 實驗材料 8
二. 實驗方法 21
1. 染色體DNA之抽取 21
2. 質體DNA之抽取 21
3. 重組質體之構築   22
4. 洋菜膠電泳法 23
5. 聚合酶鏈反應 23
6. DNA片段之回收 23
7. 大腸桿菌之轉形作用 24
8. 柑橘潰瘍病菌之轉形作用 25
9. DNA探針之製備 25
10. 南氏雜交反應 26
11. 蛋白質之純化 27
12. 蛋白質濃度之測定 28
13. 抗體之製作 29
14. 細胞萃取物之製備 29
15. SDS-Polyacrylamide凝膠電泳分析 29
16. 西方墨點法 30
17. 細胞冷光酵素活性之測定 31
18. Electrophoretic mobility shift analysis 31
19. 菌落雜交法 31
結果
一. 不同黃原桿菌lexA、recA、recX基因之選殖
1. 水稻白葉枯病菌
(1) recA基因之選殖 33
(2) pAP41之限制酶圖譜 33
(3) 序列分析與比對 36
2. 十字花科黑腐病菌
(1) recA基因之選殖 36
(2) pAP60之限制酶圖譜 39
(3) 序列分析與比對 39
二. 不同黃原桿菌lexA、recA、recX基因之序列比對
1. lexA基因 44
2. recA基因 44
3. recX基因 45
三. 柑橘潰瘍病菌LexA蛋白之作用
1. 三種黃原桿菌lexA、recA與recX啟動子序列分析 47
2. 三種黃原桿菌之啟動子與 LexA蛋白結合測定 47
(1) lexA啟動子 47
(2) recA啟動子 48
3. LexA調控十字花科黑腐病菌recA的表現 52
四. LexA蛋白結合位置之確認
(一) lexA啟動子之突變分析 55
1. lexA突變啟動子之結合測定 55
2. lexA突變啟動子之轉錄活性 58
(1) 重組質體之構築 58
(2) 生長穩定性之測定 60
(3) 冷光值之測定 60
3. lexA突變啟動子之LexA蛋白表現 64
(1) 構築含lexA表現載體 64
(2) 分析LexA之表現量 65
(二) recA啟動子之突變分析 68
(三) recX啟動子之突變分析 68
討 論 74
參考文獻 77
參考文獻
Bertrand-Burggraf, E., S. Hurstel, M. Daune, and M. Schnarr. 1987. Promoter properties and negative regulation of the uvrA gene by the LexA repressor and its amino-terminal DNA binding domain. J. Mol. Biol. 193:293-302.
Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7: 1513-1523.
Brent R, and Ptashne M. 1981. Mechanism of action of the lexA gene product. Proc Natl Acad Sci USA 78:4204-8
Cheo, D. L., K. W. Bayles, and R. E. Yasbin. 1993. Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system. J. Bacteriol. 175:5907-5915.
Clark, A. J. 1973. Recombination deficient mutants of E. coli and other bacteria. Ann. Rev. Genet. 7: 67-86.
Clark, A. J. and A. Margulies. 1965. Isolation and Characterization of recombination, deficient mutants of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 53: 451-459.
Daniel, E. W. and J. A. Patterson. 1992. Anaerobic production of extracellular polysaccharide by Butyrivibrio fibrisolvens nyx. Appl. Environ. Microbiol. 58:385-391.
Dai, H., T. Y. Chow, H. J. Liao, Z. Y. Chen, and K. S. Chiang 1998. Nucleotide sequence involved in the neolsogenic insertion of filamentous phage CF16-v1 into the Xanthomonas campestris pv. citri chromosome. Virology. 167:613-620
Davis, E. O., S. G. Sedwick, and J. M. Colston. 1991. Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J. Bacteriol. 173: 5653-5662.
De Feyter, R., Y. Yang, and D. W. Gabriel. 1993. Gene-for-genes interaction between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol. Plant Microbe Interact. 6: 225-37.
Durbach S. I., S. J. Andersen, and V. Mizrahi 1997. SOS induction in mycobacteria: analysis of the DNA-binding activity of a LexA-like repressor and its role in DNA damage induction of the recA gene from Mycobacterium smegmatis. Mol. Microbiol. 26: 643-6539.
Duwat, P., S. D. Ehrlich, and A. Gruss. 1993. Ageneral method for cloning recA genes of gram-postive bacteria by polymerase chain reaction. J. Bacteriol. 174:5171-5175.
Dybvig, K., S. K. Kollingshead, D. B. Heath, F. Sun and, A. W. Woodard 1992. Degenerate oliginucleotide primers for enzymatic amplification of recA sequences from gram-positive bacteria and mycoplasmal. J. Bacteriol. 174:2729-2732.
Eisen, J. A. 1995. The RecA protein as a model molecular for Molecular Systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J. Mol. Evol. 41: 1105-1123.
Feinberg, A. P. and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonucleases fragments to high specific activity. Anal. Biochem. 132: 6-13.
Fernandez de Henestrosa, A. R., E. Rivera, A. Tapias and, J. Barbe. 1998. Identification of the Rhodobacter sphaeroides SOS box. Mol. Microbiol 28:991-1003.
Fernández de Henestrosa, A. R., E. Rivera, A. Tapirs, and J. Barbé. 1998. Identification of the Rhodobacter sphaeroides SOS box. Mol. Microbiol. 28: 991-1003.
Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA repair and mutagenesis. ASM press, Washington, D. C. PP. 407-464
Fitzpatrick, R., M. J. O’Donohue, D. Joy, C. Herry, and K. Dunican. 1994. Construction and characterization of recA Mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum. Appl. Microbiol. Biotechnol. 42:575-580.
Garriga, X., S. Calero, and J. Barbé. 1992. Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida. Mol. Gen. Genet. 236: 125-134.
Grunstein, M. and D. S. Hogness, 1975. Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA. 72:3961
Hanahan, D.1983. Studies on transformation of Escherichia coil with plasmid. J. Mol. Biol. 166: 557
Hill, T. M., B. Sharma, M Valjavec-Gratian and J. Smith.1997. Sfiindependent filamentation in Escherichia coli is lexA dependent and requires DNA damage for induction. J. Bacteiol. 179:1931-1939.
Horii, T., T. Ogawa, and H. Ogawa. 1980. Organization of the recA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 77: 313-317.
Johnston, J. L., J. Sloan, J. A. M. Fyfe, J. K. Davies and J. I. Rood. 1997. The recA gene from Clostridium perfringens is induced by methyl methanesulphonate and contains an upstream Cheo box. Microbiology 143:885-890.
Karlin, S. and L. Brocchieri. 1996. Evolutionary conservation of recA genes in relation to protein structure and function. J. Bacteriol. 178: 1881-1894.
Kearney, and B. J. Staskawicz. 1990. Widespread distribution and fitness contribution of Xanthomonas Campestris avirulence gene avrBs2. Nature 346:385-386.
Kim, B. and J. W. Little. 1992. Dimerization of a specific DNA-binding protein on the DNA. Science 255:203-206.
Kitajima, H., 1979. Citrus canker. Agri. Hort. 53:577-579.
Koch, W.H., and R. Woodgate. 1998. The SOS response. In DNA Damage and Repair: DNA Repair in Prokaryotes and Lower Eukaryotes.Nickoloff, J.A., and hoekstra, M.F. Totowa, NJ:Humana Press, pp.107-137
Kowalczykowski, S. C., D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58: 401-465.
Kuzzminov, A and F. W. Stahl. 1997. Stability of linear DNA in recA mutant E. coli cells reflects ongoing chromosomal DNA degradation. J. Bacteriol. 179:880-888.
Lewis L K., G. R. Harlow, L. A. Gregg-Jolly, and D. W. Mount. 1994. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J Mol Biol 241:507-23.
Little, J. W. 1984. Autodigestion of lexA and phageλrepressors. Biochemistry 81: 1375-1379.
Little J. W. 1991. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie. 73: 411-422.
Little, J. W. and D. W. Mount. 1982. The SOS regulatory system of Escherichia coli. Cell 29: 11-22.
Little J. W., D. W. Mount, and C. R. Yanisch-Perron. 1981. Purified LexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. USA 78: 4199-4203.
Little, J. W., S. H. Edmiston, L. Z. Pacelli, and D. W. Mount. 1980. Cleavage of the Escherichia coli LexA protein by the RecA protease. Proc. Natl. Acad. Sci. USA 77: 3225-3229.
Liu, C. C., R. Huhne, J. Tu, E. Lorbach, and P. Droge. 1998. The resolvase encoded by Xanthomonas campestris transposable element ISXC5 constitutes a new subfamily closely related to DNA invertases. Genes Cells 3: 221-233.
Maniatis, T., E. F. Fritsch., and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor laboratory, Cold Spring Harbor, N. Y.
Miller, R.V. and T.A. Kokjohn. 1990. General microbiology of recA: Environmental and evolutionary significance. Annu. Rev. Microbiol. 44: 365-394.
Mount, D. W., D. G. Ennis, and J. W. Little. 1993. Novel mechanism for UV sensitivity and apparent UV nonmutability of recA432 mutants: persistent LexA cleavage following SOS induction. J. Bacteriol. 175: 7373-7382.
Pearce, B. J., A. M. Naughton, E. A. Campbell, and H.R. Masure. 1995. The rec locus, a competence-induced operon in Streptococcus pneumoniae. J. Bacteriol. 117:86-93
Radman, M. 1974. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli : SOS repair hypothesis. IN molecular and environmental aspects of mutagenesis. parkash, L. F. Sherman, M. Miller, C. W. Lawrence, and H. Tabor(eds). Springfield, I. L. :Charles C. Thomonas, pp.128-142.
Riera, J. and J. Barbé. 1995. Cloning, sequence and regulation of expression of the lexA gene of Aeromonas hydrophila. Gene 154: 71-75.
Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.
Sambrook. J., E. F. Fritsch., and T. Maniatis. 1989. Molecular cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Sassanfar, M. and J. W. Roberts. 1990. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J. Mol. Biol. 212: 79-96.
Schnarr, M., J. Pouyet, M. Granger-Schnarr, and M. Daune. 1985. Large-scale purification, oligomerization equilibria, and specific interaction of the LexA repressor of Escherichia coli. Biochemistry 24: 2812-2818.
Schnarr, M. , M. Granger-Schnarr, S. Hurstel, and J. Pouyet. 1988. The carboxyl-terminal domain of the LexA repressor oligomerises essentially as the entire protein. FEBS Lett. 234: 56-60.
Simpson, A.J.G. et al. 2000. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406, 151-157.
Southern, E. M. 1975. Detection of specific sequences among DNA fragment separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.
Tapias, A., and J. Barbe. 1998. Mutational analysis of the Rhizobium etli recA operator. J. Bacteriol. 180:6325-6331.
Tapias, A., S. Campoy, and J. Barbé. 2000. Analysis of the expression of the Rhodobacter sphaeroides lexA gene. Mol. Gen. Genet. 263: 957-965.
Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354.
Vauterin, L., J. Swing, S. Sersters, M. Gillis, T. W. Mew, M. N. Schroth, N. J. Palleroni, D. C. Hildebrand, D. E. Stead, E. L. Civerolo, A. C. Hayward, H. Maraite, R. E. Stall, A. K. Vidaver, and J. F. Bradbury. 1990. Towards an improved taxonomy of Xanthomonas. Int. J. Syst. Bacteriol. 40(3):312-316.
Walker, G. C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48: 60-93.
Wang, H. J., C. M. Cheng, C.N. Wang, T. T. Kuo. 1999. Transcription of the genomic of the filamentous bacteriophage cf from both plus and minus DNA strands. Virology. 256:228-232.
Wertman, K. F., and D. Mount. 1985. Nucleotide sequence binding specificity of the LexA repressor of Escherichia coli K-12. J Bacteriol. 163:376-384.
Williams, P. H. 1980. Black rot : a continuing threat to world crucifers. Plant Dis. 64:736-742.
Winterling, K. W., D. Chafin., J. J. Hayes., J. Sun., A. S. Levine., R. E. Yasbin., and R. Woodgate., 1998. The Bacillus subtilis DinR binding site : redefinition of consensus sequence. J. Bacteriol. 180:2201-2211.
Wu, P. I. 1998. Regulation of the recA gene expression in Xanthomonas campestris pv. citri. Master thesis, Institute of Biology, Fu-Jen University, Taipei, Taiwan.
Wu, W. C., Y.K.Hong, C. M. Huang, Y. Y. Ten, T. Lee, S. F. Chang, C. H. Wang, and M. H. Huang. 1985. Phage induced mutations in xanthomonas campestris pv. Citri. Plant Protect. Bull. Taipei 27:19-33
Yang, M. K., M. E. Chou, and Y. C. Yang. 2000. Molecular characterization and expression of the recX gene of Xanthomonas campestris pv. citri. Curr. Microbiol. In press.
Yang, M. K., P. I. Wu, and Y. C. Yang. 2000. Identification of a lexA gene in, and construction of a lexA mutant of, Xanthomonas campestris pv. citri. Curr. Microbiol. 40: 233-238.
Yang, M. K., W. C. Su, and T. T. Kuo. 1991. High efficient transfection of Xanthomonas campestris by electroporation. Bot. Bull. Acad. Sin. Taipei 32: 197-203.
Yang, M. K., Chou, M.E, and Yang, Y. C. 2001. Molecular characterization and expression of the recX gene of Xanthomonas campestris pv. citri. Curr. Microbiol. 42, 257-263
Yang, Y. C. and M. K. Yang. 2000. Construction and Characterization of a recA mutant of Xanthomonas campestris pv. citri. Bot. Bull. Acad. Sin. Taipei 41: 129-137.
Yang, Y.C, M. K. Yang, T.T. Kuo, and Tu J. 2001. Structural and functional characterization of the lexA gene of Xanthomonas campestris pathovar citri. Mol Genet Genomics 265:316—326
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top