跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳盈璋
研究生(外文):Chen Ying Chang
論文名稱:油煙中多環芳香族碳氫化合物的形成與致突變性研究
論文名稱(外文):Studies on the Formation of Polycyclic Aromatic Hydrocarbons and Mutagenicity of Fumes from Edible Oils
指導教授:陳炳輝陳炳輝引用關係
學位類別:博士
校院名稱:輔仁大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:214
中文關鍵詞:多環芳香族碳氫化合物安定性油煙油炸致突變性
相關次數:
  • 被引用被引用:6
  • 點閱點閱:597
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
多環芳香族碳氫化合物(polycyclic aromatic hydrocarbons, PAHs),指僅由碳及氫原子組成兩個或兩個以上之芳香環有機化合物。美國環境保護學會依據它們在大氣中的濃度與其致癌性或致突變性高低,選出16種 PAHs 為優先污染物,其中以benzo(a)pyrene、benz(a)anthracene及 dibenz(a,h)anthracene 等三種 PAH 的致癌性最高。
本研究共分為五部分。除文獻回顧外,實驗一以模式系統探討benzo(a)pyrene、 benz(a)anthracene和dibenz(a,h)anthracene三種多環芳香族碳氫化合物以固態或溶液形態於加熱過程及4000 lux光照之安定性,並以高效率液相層析法(HPLC)測定殘留PAH之含量。結果顯示,PAH的熱裂解速率與加熱溫度和存在形態有直接相關。密閉狀況下,固態PAH含量或PAH 溶液的濃度均隨著加熱溫度及時間的增加而減少,三種PAH於200℃之熱裂解速率均遠大於100℃,且其熱裂解均符合一次反應。在相同加熱溫度下,固態的PAH較溶液中的PAH安定。100 ℃加熱時,benz(a)anthracene具有最大的裂解速率數,其次為benzo(a)pyrene和dibenz(a,h)anthracene;200℃加熱所得到的結果與100℃加熱的結果類似,但benz(a)anthracene的安定性郤較benzo(a)pyrene大。此三種PAH以日光燈於4000 lux 強度照射144小時後,其含量的變化均不顯著,顯示此三種PAH對光照有相當安定性。
實驗二為測定脂肪酸甲酯與食用油於加熱過程中所生成油煙的PAHs含量,並推測PAHs的生成與油煙裂解產物的關係。結果顯示,脂肪酸甲酯在加熱過程中會比食用油產生更多的油煙,但PAHs的含量卻較食用油低。次亞麻油酸甲酯所產生的PAHs含量最高,次為亞麻油酸甲酯、油酸甲酯及硬脂酸甲酯。大豆油加熱所產生的PAHs高於葵花油,而與芥花油相當。油脂裂解產物中具有苯環的化合物可能是PAHs生成的前趨物質,油煙中亦含有PAH的衍生物。
實驗三的目的在於改良油煙吸附方法,以期達到完全吸附油炸雞腿過程中產生之油煙,並測定以大豆油、葵花油及芥花油炸雞腿過程中產生油煙之PAHs的含量。結果發現,以吸附棉配合冷凝裝置可完全吸附油炸雞腿過程中所產生之油煙。大豆油、葵花油或芥花油於炸雞腿的過程中,大部分的油煙冷凝於冷凝裝置,少部分被吸附棉所吸附。油煙中的PAHs約有40 %會被吸附棉所吸附,其餘則於冷凝裝置中被測得。油炸雞腿的過程中,葵花油所產生的油煙量及PAHs均較大豆油及芥花油低,而大豆油則是三種油脂中PAHs生成量最高的。油炸時的食物種類、加熱溫度、油脂種類、油脂用量及油煙吸附方式均可能影響油煙中PAHs的生成。
實驗四為探討大豆油、葵花油及芥花油於油炸雞腿過程中油煙之致突變性。結果發現,不論是大豆油、葵花油或芥花油於163℃油炸過程時產生之油煙致突變性均隨油炸時間增加而增加。於相同的油炸條件時,三種食用油產生的油煙以大豆油油煙致突變性最強,芥花油油煙次之,而葵花油油煙的致突變性最低。在油煙吸附裝置部分,吸附棉萃出液的致突變性最高,其次為冷凝液,而玻璃珠萃出液的致突變性最低。油煙的致突變性可能與油煙中PAH及油脂裂解產物如烯醛類物質的含量有關。
Polycyclic aromatic hydrocarbons (PAHs), a class of condensed multinumbered benzenoid-ring compounds, contain only carbon and hydrogen. Sixteen PAHs were selected as priority pollutants by the United States Environmental Protection Agency (USEPA). Of the various PAHs, benzo(a)pyrene, benzo(a)anthracene and dibenz(a,h)anthracene were reported to be the most mutagenic and carcinogenic.
This study contained five parts. In addition to literature review, four experiments were done in the study. First, the stability of three polycyclic aromatic hydrocarbon standards, benzo(a)pyrene, benzo(a)anthracene and dibenz(a,h)anthracene during heating and illumination were studied. The residual amount of each PAH was quantified by high-performance liquid chromatography (HPLC). Results showed that during heating in a closed system, the levels of benzo(a)pyrene, benzo(a)anthracene and dibenz(a,h)anthracene in solid form or in hexane decreased both with increasing temperature and time. The degradation of each PAH during heating fits a first-order model, and the degradation rate constant (hr-1) at 200℃ was higher than at 100℃. Also, the PAHs in solid form possessed higher stability than in hexane. Either in solid form or in solution, benzo(a)anthracene showed the highest degradation rate constant, followed by benzo(a)pyrene and dibenz(a,h)anthracene at 100℃. Similar result was found at 200℃, with the exception that benzo(a)anthracene was more stable than benzo(a)pyrene. The degradations of all the three PAHs were not significant during illumination at 4000 lux for 144 hr.
In the second experiment, the fumes of model lipids (methyl stearate, methyl oleate, methyl linoleate and methyl linolenate) and food lipids (soybean, sunflower and canola oil) smoke, and the mechanism of PAH formation were studied. Results showed that model lipids were more susceptible to smoke formation than food lipids during heating, however, the PAHs concentrations were lower for the former. Linolenic acid produced the highest amount of PAHs, followed by linoleic acid, oleic acid and stearic acid. Also, soybean oil generated a larger amount of PAH than canola oil and sunflower oil. The level of PAH formation correlated well with the degree of unsaturation of fatty acids, and linolenic acid played a more important role for PAH formation than the other model lipids. Benzene-containing compounds were found to be possible precussors for PAH formation. Several PAH derivatives were also identified in the fumes of heated model lipids and food lipids.
The objective of the third experiment was to modify the method of smoke adsorption and determine the PAHs content in the smoke during frying of chicken legs. Results showed that the fumes were collected completely using the adsorption wool and condensation apparatus. Most of smoke formed heated soybean oil, sunflower oil and canola oil were collected in the condensation apparatus, while some were adsorbed by adsorption wool. Approximately 40% PAHs of fumes were detected in the adsorption wool, while the rest was found in the condensation apparatus. During frying of chicken legs, sunflower oil produced the lowest amount of smoke, followed by soybean oil and canola oil. However, soybean oil generated a larger amount of PAH than canola oil and sunflower oil. The content of PAHs in the smoke may be varied depending on the variety of food and oil, heating temperature, heating time, amount of oil and adsorption method during frying.
In the last experiment, the mutagenicity of smoke from soybean oil, sunflower oil and canola oil during frying of chicken legs was studied. Results showed that the mutagenicity of smoke from soybean oil, sunflower oil and canola oil increased with increasing frying time. However, under the same heating condition, the smoke from soybean oil resulted in the largest mutagenicity, followed by canola oil and sunflower oil. For the smoke adsorption apparatus, the extract from adsorption wool showed the highest mutagenicity, followed by condensate and the glass bead extract. The degree of mutagenicity could be affected by the presence of both PAHs and lipid degradation products in the smoke.
目 錄
頁 次
中文摘要
第一章 文獻回顧--------------------------------------------------------- 1
一、PAHs簡介-------------------------------------------------------- 1
二、PAHs的物化性質----------------------------------------------- 4
三、PAHs的生成----------------------------------------------------- 6
四、PAHs的生理活性----------------------------------------------- 9
五、PAHs安定性之探討-------------------------------------------- 12
(A)光化學氧化作用----------------------------------------------- 12
(B) NOx、 HNO3與O3------------------------------------------ 12
(C)溫度-------------------------------------------------------------- 14
(D)存在狀態------------------------------------------------------- 16
六、食品中的PAHs-------------------------------------------------- 17
七、脂肪酸於加熱時的揮發性成分------------------------------ 25
八、PAHs的分析----------------------------------------------------- 28
(A) PAHs的萃取與純化----------------------------------------- 28
(1) Soxhlet萃取----------------------------------------------- 28
(2)超音波振盪------------------------------------------------- 29
(3)加速萃取法------------------------------------------------- 30
(4)吸附劑------------------------------------------------------- 30
(5)超臨界萃取------------------------------------------------- 31
(B)萃取與純化過程PAHs回收率之探討-------------------- 32
(C)以GC分離PAHs之探討----------------------------------- 36
(D)以HPLC分離PAHs之探討-------------------------------- 39
(E)以電泳技術分離PAHs之探討----------------------------- 44
(F)以酵素免疫分析法分離PAHs之探討-------------------- 49
九、油炸食品油煙之致突變性與PAHs含量------------------ 50
十、油炸食品之油煙吸附----------------------------------------- 53
第二章 多環芳香族碳氫化合物於加熱和光照過程中之安定性 56
一、前言--------------------------------------------------------------- 58
二、材料與方法------------------------------------------------------ 60
(A)材料------------------------------------------------------------- 60
(B)方法------------------------------------------------------------- 60
(1)PAH溶液於加熱過程中的安定性--------------------- 60
(2)固態PAH於加熱過程中的安定性--------------------- 61
(3)PAH溶液於光照過程中的安定性--------------------- 61
(4)固態PAH於光照過程中的安定性--------------------- 62
(C)HPLC操作條件----------------------------------------------- 62
(D)速率常數計算------------------------------------------------- 63
(E)統計分析------------------------------------------------------- 64
三、結果與討論------------------------------------------------------ 65
四、結論--------------------------------------------------------------- 77
第三章 多環芳香族碳氫化合物於模式油與食用油加熱過程中的形成 78
一、前言--------------------------------------------------------------- 80
二、材料與方法------------------------------------------------------ 82
(A)材料------------------------------------------------------------- 82
(B)加熱與吸附系統---------------------------------------------- 83
(C)氣相層析質譜儀---------------------------------------------- 83
(D)方法------------------------------------------------------------- 86
(1)不同吸附劑對於PAHs吸附效果比較--------------- 86
(2)模式油與食用油加熱過程中揮發性物質及PAH之收集--- 87
(3)模式油與食用油加熱過程之揮發性物質測定------ 87
(4)模式油與食用油加熱過程之PAHs測定------------ 88
(5)十六種PAH的最低偵測(DL)及最低定量極限(QL)測定--- 89
(6)食用油脂肪酸組成測定--------------------------------- 89
(7)碘價(IV)測定---------------------------------------------- 90
三、結果與討論------------------------------------------------------- 92
(A) GC/MS/SIM方法評估--------------------------------------- 92
(B) 加熱過程揮發物吸附裝置發展--------------------------- 92
(C) 不同吸附劑對於PAHs於模式油加熱過程中之吸附率 97
(D) 模式油與食用油加熱過程中油煙成分------------------ 99
四、結論--------------------------------------------------------------- 118
第四章 油炸食品過程中油煙的PAHs測定 119
一、前言--------------------------------------------------------------- 120
二、材料與方法------------------------------------------------------ 122
(A)材料與儀器---------------------------------------------------- 122
(1)原料---------------------------------------------------------- 122
(2)油炸及油煙吸附設備------------------------------------- 122
(3)試藥---------------------------------------------------------- 123
(4)氣相層析質譜設備---------------------------------------- 123
(B)油脂樣品性質分析------------------------------------------- 123
(1)過氧化價---------------------------------------------------- 124
(2)酸價---------------------------------------------------------- 124
(3)TBARs ------------------------------------------------------ 125
(C)食物基本成份分析-------------------------------------------- 125
(D)油炸雞腿------------------------------------------------------- 127
(E) 萃取回收率測定-------------------------------------------- 130
(F) 油煙中PAHs分析------------------------------------------ 131
(G) 數據統計分析----------------------------------------------- 136
三、結果與討論------------------------------------------------------- 137
(A)、三種食用油的理化性質分析---------------------------- 137
(B)、油煙吸附裝置探討----------------------------------------- 139
(C)、油炸過程油煙與PAHs產生量--------------------------- 143
四、結論---------------------------------------------------------------- 156
第五章 油炸食品過程中油煙致突變性測定 157
一、前言--------------------------------------------------------------- 158
二、材料與方法------------------------------------------------------ 160
(A)材料與儀器--------------------------------------------------- 160
(1)材料與藥品------------------------------------------------ 160
(2)油炸及油煙吸附設備------------------------------------- 161
(3)試驗菌株---------------------------------------------------- 161
(B)油炸雞腿及油煙收集----------------------------------------- 161
(C)油煙萃出物致突變性分析----------------------------------- 163
(1)菌株特性確認----------------------------------------------- 163
(a) Histidine Requirement--------------------------------- 163
(b) rfa mutation---------------------------------------------- 163
(c) uvrB mutation------------------------------------------- 163
(d) R-factor--------------------------------------------------- 163
(2)毒性試驗------------------------------------------------------ 165
(3)致突變性試驗------------------------------------------------ 165
(D) 數據統計分析-------------------------------------------------- 166
三、結果與討論-------------------------------------------------------- 167
(A)、食用油脂之油煙毒性--------------------------------------- 167
(B)、食用油脂之油煙致突變性--------------------------------- 171
四、結論----------------------------------------------------------------- 190
總結 191
參考文獻------------------------------------------------------------------- 193
附錄一:粗脂肪之檢驗方法 204
附錄二:粗蛋白之檢驗方法 206
附錄三: Ames test使用之培養基配方 208
參考文獻
陳曉婷, 鄭褔田. 1990. 廚房油煙之致突變性研究. 台灣大學環境工程研究所碩士論文.
吳思敏, 顏國欽. 2000. 數種市售食用油脂的理化特性與油煙致突變性. J. Food Drug Anal. 8(2): 133-140.
Afolabi, O.A., Adesulu, E.A. and Oke, O.L. 1983. Polyunclear aromatic hydrocarbons in some Nigerian preserved freshwater fish species. J. Agric. Food Chem. 31:1083-1090.
Ames, B.N., McCann, J. and Yamasaki, E. 1975. Methods for detecting carcinogens and mutagen with the Salmonella/mammali an microsome mutagenicity test. Mutat. Res. 31:347-364.
AOAC ”Official Methods of Analysis”, 14th ed.; Horwitz, William, Ed.; Association of Official Analytical Chemists: Washington, DC, 1980; p507.
A.O.C.S. 1980. Offical and Tentative Method of Analysis. 3rd ed. American Oil Chemist’ Society. Champaign, IL. U.S.A.
Barfknecht, T.R. and Naismith, R.W. 1988. Practical mutagenicity testing, p.143-217. In product safety evaluation handbook (Gad, S.G. and Dekker, M. eds.), New York.
Castello, G and Gerbino, T.C. 1993. Analysis of polycyclic aromatic hydrocarbons with an ion-trap mass chromatographic and high-performance liquid chromatographic techniques. J. Chromatogr. 642:351-357.
Chen, B.H., Lin, Y.S. and Chiu, C.P. 1996. Evaluation of analysis of polycyclic aromatic hydrocarbons in meat products by liquid chromatography. J. Agric. Food Chem. 44:2244-2251.
Chen, B.H. and Lin, Y.S. 1997. Formation of polyciclic aromatic hydrocarbons during processing of duck meat. J. Agric. Food Chem. 45:1394-1403.
Chen, B.H. 1997. Analysis, formation and inhibition of polycyclic aromatic hydrocarbons in foods: an overview. J. Food Drug Anal.5(1):25-42.
Chen, B.H. and Meng, C.N. 1999. Formation of heterocyclic amines in a model system during heating. J. Food Prot. 62:1445-1450.
Chen, B.H. and Chen Y.C. 2001. Formation of Polycyclic Aromatic Hydrocarbons in the Smoke from Heated Model Lipids and Food Lipids. J. Agric. Food Chem. 49: 5238-5243.
Chiang, T.A., Wu, P.F., Wang, L.F., Lee, H., Lee, C..H., and Ko, Y.C. 1997. Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan. Mutat. Res. 381:157-161.
Chiu, C.P., Lin, Y.S. and Chen, B.H. 1997. Comparison of GC-MS and HPLC for overcoming matrix interferences in the analysis of PAHs in smoked food. Chromatographia-; 44 (9/10) 497-504.
Chong, S.K. and Koo, M.C. 1999. Effect of Chinese yam on benzo[a]pyrene hydroxylase activities in rats fed dietary benzo[a]pyrene. J Food Sci. Nutr. 4(3):193-196.
Copper, C.L. and Sepaniak, M.J. 1994. Cyclodextrin-modified micellar electrokinetic capillary chromatography separations of benzopyrene isomers: correlation with computationally derived host-guest energies. Anal. Chem. 66: 147-154.
Dadoo, R. and Zare, R.N. 1998. Advances in capillary electrochromatography: rapid and high-efficiency separation of PAHs. Anal. Chem. 70:4787-4792.
Djozan, D. and Assadi, Y. 1999. Monitoring of polycyclic aromatic hydrocarbons in water using headspace solid-phase microextraction and capillary gas chromatography. Microchem. J. 63(2): 276-284.
Doremire, M.E., Harmon, G.E., and Pratt, D.E. 3,4-Benzopyrene in charcoal grilled meats, J. Food Sci. 44: 622-623, 1979.
El-Harrak, R., Calull, M., Marce, R.M. and Borrull, F. 1996. Determination of polycyclic aromatic hydrocarbons in water by solid-phase extraction membranes. Int. J. Environ. Anal. Chem. 64(1):47-57.
Fernandez, M.J., Garcia, C., Garcia-Villanova, R.J. and Gomez, J.A. 1996. Evaluation of liquid-liquid extraction and liquid-solid extraction with a new sorbent for the determination of polycyclic aromatic hydrocarbons in raw and finished drinking waters. J. Agric. Food Chem. 44(7): 1785-1789.
Frankel, E.N. 1998. Lipid oxidation. Bell & Bain Ltd., Glasgow. Great Britain: P. 230-232
Fretheim, K. 1983. Polycyclic aromatic hydrocarbons in grilled meat products-a review. Food Chem. 10: 129-139.
Gao, Y.T., Blot, W.J., and Zheng, W. 1987. Lung cancer among Chinese women. Int. J. Cancer 40:604-609
Gao, Y.T., Blot, W.J., and Zheng, W. 1988. Lung cancer and smoking in Shanghai. Int. J Epidemiol. 17:277-280.
Gomma, E.A., Gray, J.L. Rabie, S., Bote,CL. And Boorem, A.M. 1993. Polycyclic aromatic hydrocarbons in smoked foodproducts and commercial liquid smoked flavorings. Food Addit. Contam. 10(5):503-521.
Grimmer, G. and Boehnke, H. 1975. Polycyclic aromatic hydrocarbon profile analysis of high-protein foods, oils, and fats by gas chromatography. JAOAC. 58(4): 725-733.
Guerrin, M. R. 1993. Enviroment tobacco smoke exposure assessment. Enviromental Tcbocco Smoke, Springer-Verlag, New York.
Guillen, M.D., Sopelana, P. and Aranzazu, P.M. 2000. Determination of polycyclic aromatic hydrocarbons in commercial liquid smoke flavorings of different compositions by gas chromatography-mass spectrometry. J. Agric. Food Chem. 48 (2):126-131.
Guillen, M.D., Sopelana, P. and Partearroyo, M.A. 2000. Study of several aspects of a general method for the determination of polycyclic aromatic hydrocarbons in liquid smoke flavourings by gas chromatography-mass spectrometry. Food Addit. Contam. 17(1):27-44.
Hoyland, D.V. and Taylor, A.J. 1991. A review of the methodology of the 2-thiobarbituric acid test. Food Chem. 40:271-291.
Hartmann, K. 2000. Determination of benzo[a]pyrene by using smoke flavourings on meat products. Deutsche Lebensmittel Rundschau 96(5):163-166.
Hellou, J. and Warren, W.G. 1997. Polycyclic aromatic compounds and saturated hydrocarbons in tissues of flatfish: insight on environmental exposure. Marine Environ. Res. 43(1/2):11-25.
Henderson, S.K., Witchwood, A. and Nawar, W.W. 1980. The autoxidation of linoleates at elevates temperatures. JAOCS. 57:409-413.
Hopia, A, Hyysalo, H. and Wickstrom, K. 1986. Margarines, butter and vegerable oil as sources of polycyclic aromatic hydrocarbons. J. Assoc. Off. Anal. Chem. 63(7):889-893.
IARC. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Polynuclear aromatic compounds. Part 1. Chemicals, environment and experimental data; IARC: Lyon, 1983; Vol. 32
IARC. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Overall evaluation of carcinogenicity: An updating of IARC monographs volumes 1 to 42; IARC: Lyon, 1987; Suppl. 7.
International Conference on Harmonization (ICH)─Guideline on the validation of analytical procedures: Methology Q2B, November 1996.
Joe, F.L., Salemme, J. and Fazio, T. 1982. Liquid chromatographic with fluorescence and ultraviolet detection of polycyclic aromatic hydrocarbons in barley malt. J. Assoc. Off. Anal. Chem. 36(6):1395-1402.
Joe, F.L., Salemme, J. and Fazio, T. 1984. Liquid chromatographic determination of trace residues of polycyclic aromatic hydrocarbons in smoke foods. J. Assoc. Off. Anal. Chem. 67(5):1076-1082.
Johnston, J.J., Wong, J.P., Feldman, S.E. and Ilnicki, L.P. 1994. Purge and trap/gaschromatography/ mass spectrometry method for determining smoke contamination of foods and packing materials. J. Agric. Chem. 42:1954-1958.
Kamens, R.M., Perry, J.M., Saucy, D.A., Bell, D.A., Newton, D.L. and Brand, B. 1985. Factors which influence polyunclear aromatic hydrocarbon decomposition on wood soot particle. Envir. Int. 11:131-136.
Kamens. R.M., Fulcher, J.N. and Zhishi, G. 1986. Effects of temperature on wood soot PAH decay in atmospheres with sunlight and low NOx. Atmospheric Environment 20:1579-1587.
Kangsadalampai, K., Butryee, C. and Manoonphol, K.1997. Direct mutagenicity of the polycyclic aromatic hydrocarbon-containing fraction of smoked and charcoal-broiled foods treated with nitrite in acid solution. Food Chem. Toxicol. 35(2):213-218.
Kannappan, S., Jasmine, G.I., Jeyachandran, P. and Tamilselvi, A. 1999. Polyaromatic hydrocarbons in fresh marine fin and shell fishes. J. Food Sci. Technol., India. 36(5): 472-474.
Karlesky, D.L. Rollie, M.E., Warner, I.M. and Ho, C.N. 1986. Sample cleanup procedure for polyunclear aromatic hydrocarbons in complex matrices. Anal. Chem. 58:1187-1192.
Kayali-Sayadi, M.N., Rubio-Barroso, S., Cuesta-Jimenez, M.P. and Polo-Diez, L.M. 1999. A new method for the determination of selected PAHs in coffee brew samples by HPLC with fluorimetric detection and solid-phase extraction. J. Liquid Chromatogra. Rel. Technol. 22(4):615-627.
Kayali-Sayadi, M.N., Rubio-Barroso, S., Garcia-Iranzo, R. and Polo-Diez, L.M. 2000. Determination of selected polycyclic aromatic hydrocarbons in toasted bread by supercritical fluid extraction and HPLC with fluorimetric detection. J. Liquid Chromatogra. Rel. Technol. 23(12):1913-1925.
Kim, S.B. and Margolin, B.H. 1999. Statical methods for the Ames Salmonella assay: a review. Mutat. Res. 436:113-122.
Kim, S. J., Park, K.H. and ; Hwang, I.Y. 1999. Photoinduced cytotoxicity of polycyclic aromatic hydrocarbons in mammalian cells. Food Sci. Biotechnol. 8(5):314-317.
Kleinjans, J.C.S., Moonen, E.J.C., Dallinga, J.W. Albering, H.J., Bogaard, A.E.J.M.-van-den, and Schooten, F.J. van. 1996. Polycyclic aromatic hydrocarbons in whiskies. Lancet. 348(9043):1731.
Ko, Y.C., Lee, C.H., Chen, M.j., Huang, C.C., Chang, W.Y., Lin, H.J., Wang, H.Z. and Chang, P.Y. 1997. Risk and protective factors for primary lung cancer among nonsmoking women in Taiwan. Int. J. Epidemiol. 26:24-31.
Kocourek, V., Tomaninova, M. and Hajslova, J. 1997. Stability of polycyclic aromatic hydrocarbons (PAH) in some extraction solvents. Czech J. Food Sci. 15(2):91-100.
Kolarovic, L. and Trailter, H. 1982. Determination of polycyclic aromatic hydrocarbons in vegetable oils by caffeine complexation and glass capillary gas chromatography. J. Chromatogr. 237:263-272.
Korenaga, T., Kajihara, T. and Tsukiyama, Y. 1999. Determination and dynamic analysis of polycyclic aromatic hydrocarbons in soil and plant samples. Bunseki Kagaku 48(6):631-636.
Korfmacher, W.A., Wehry, E.L., Mamantov, G. and Natusch, D.F.S. 1980. Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor-adsorbed on coal fly ash. Environ. Sci. Technol. 14:1094-1099.
Lawrence, J.F. and Weber, D.F. 1984a. Determination of polycyclic aromatic hydrocarbons in some Canadian commercial fish, shellfisch, and meat products by liquid chromatography with confirmation by capillary gas chromatography-mass spectrometry. J. Agric. Food Chem. 32: 789-794.
Lawrence, J.F. and Weber, D.F. 1984b. Determination of polycyclic aromatic hydrocarbons in Canadian samples of processed vegetable and dairy products by liquid chromatography with fluorescence detection. J. Agric. Food Chem. 32:794-797.
Ledererova, V., Hajslova, J., Tomaniova, M., Kocourek, V., Lenicek, J. and Sevcik, J. 1998. Polycyclic aromatic hydrocarbons in apples grown in areas with a different contamination of the atmosphere. Hygiena. 43(3):154-161.
Li, S. 1994. Analysis of polycyclic aromatic hydrocarbons in cooking oil fume. Arch. Environ. Health 49:119-122.
Li, K., Chen, R.L., Zhao, B.T., Liu, M., Karu, A.E. Roberts, V.A. and Qing, X.L. 1999. Monoclonal antibody-based ELISAs for part-per-billion determination of polycyclic aromatic hydrocarbons: effects of haptens and formats on sensitivity and specificity. Anal Chem. 71(2):302-309.
Liu, Hui-Rong and White, P.J. 1992. High-temperature stability of soybean oils with altered fatty acid compositions. JAOCS. 69(6):533-537.
Lodovici, M., Dolara, P., Casalini, C., Ciappellano, S. and Testolin, G. 1995. Polycyclic aromatic hydrocarbon contamination in the Italian diet. Food Addit. Contam. 12(5):703-713.
Lomanno, S.S and Nawar, W.W. 1982. Effect of heating temperature and time on the volatile oxidative decomposition of linolenate. J. Food Sci. 47:744-746, 752.
Lu, Y.F., Lin, C.M. and Fang, Y.C. 2000. The relationship between arachidonic acid content and tissue lipids in rats fed cholesterol-containing diets. Nutr. Sci. J. 25(2):108-114.
Marcos, P.A. and Figueiredo-Toledo, M.C. 1996. Benzo(a)pyrene in olive oils on the Brazilian market. Food Chem.55(2):185-188.
Maron, D.M. and Ames, B.N. 1983. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 173-215.
Mestres, J and Sola, M. 1998. Diels-Alder cycloaddations of 1,3-butadiene to polycyclic aromatic hydrocarbons. Quantifying the reactivity likeness of bowl-shaped PAHs to C60. J. Org. Chem. 63:7556-7558.
Meulenberg, R., Rijnaarts, H.H.M., Doddema, H.J. and Field, J.A. 1997. Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Micro. Biol. Lett. 152(1):45-49.
Mortelmans, K. and Zeiger, E. 2000. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 455:29-60.
Mottier, P., Parisod, V. and Turesky, R.J. 2000. Quantitative determination of polycyclic aromatic hydrocarbons in barbecued meat sausages by gas chromatography coupled to mass spectrometry. J. Agric. Food Chem. 48:1160-1166.
Natusch, D.F.S. and Tomkins, 1978. Isolation of polycyclic organic compounds by solvents extraction with dimethylsulfoxide. Anal. Chem. 50:1429-1434.
Nikolaou, K., Masclef, P. and Mouvier, G. 1984. Sources and chemical reactivity of PAHs in the atmosphere - A critical review. Science Total Environ. 32: 103-132.
Norena-Barroso, E., Gold-Bouchot, G., Zapata-Perez,O. and Sericano, J.L. 1999. Polynuclear aromatic hydrocarbons in American oysters Crassostrea virginica from the Terminos Lagoon, Campeche, Mexico. Marine Pollution Bulletin. 38(8): 637-645.
Ogan, K., Katz, E. and Slavin, W. 1978. Concentration and determination of trace amounts of several polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogra. Sci. 16(11):517-522.
Ova, G. and Onaran, S. 1998. Polycyclic aromatic hydrocarbons contamination in salmon-trout and eel smoked by two different methods. Adv. Food Sci. 20:168-172.
Pitts, J.N. 1983. Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulates atmosphere. Environ. Helth. Perspec. 47:115-140.
Prosen, H. and Zupancic, K.L. 1999. Solid-phase microextraction. Trends Anal. Chem. 18(4):272-282.
Pyysalo, H., Tuominen, J., Salomaa, S. and Pohjola, V. 1987. Polycyclic organic material (POM) in urban air fractionation, chemical analysis and genotoxicity of particulate and vapor phases in an industrial town in Finland. Atomos. Environ. 21:1167-1180.
Qu, Y.H., Xu, G.X. and Zhou, J.Z. 1992. Genotoxicity of heating cooking oil vapors. Mutat. Res. 298:105-111.
Roda, A., Simoni, P., Ferri, E.N. Girotti, S. Ius, A., Rauch, P., Poplstein, M., Pospisil, M., Pipek, P., Hochel, I. and Fukal, L. 1999. Determination of PAHs in various smoked meat products and different samples by enzyme immunoassay. J. Sci. Food Agric. 79(1):58-62.
Roda, A., Simoni, P., Ferri, E.N., Girotti, S., Ius, A., Rauch, P., Poplstein, M., Pospisil, M., Pipek, P., Hochel, I. and Fukal, L.1999. Determination of PAHs in various smoked meat products and different samples by enzyme immunoassay. J. Sci. Food Agric. 79 (1): 58-62.
Rodriguez-Delgado, M.A., Corbella-Tena, R. and Garcia-Montelongo, F.J. 1999. Determination of polycyclic aromatic hydrocarbons in limpet samples. Chromatographia 50 (3/4) :235-238.
Sander, L.C. and Wise, S.A. 1989. Subambient temperature modification of selectivity in reversed-phase liquid chromatography. Anal. Chem. 61:1749-1754.
SAS Institute Inc. 1985. SAS® User’s Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, NC.
Schantz, M.M., Nichols, J.J. and Wise, S.A. 1997. Evaluation of pressurized fluid extraction for the extraction of environmental matrix reference materials. Anal Chem. 69(20):4210-4219.
Schoket, B. 1999. DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Muta. Res. 424:143-153.
Silva, H.V. de and Shankle, D.M. 1987. Effect of the antimutagen cinnamaldehyde on reversion and survival of selected Salmonella tester strains. Mutat. Res. 187:11-19.
Simko, P. 1991. Changes of benzo(a)pyrene contents in smoked fish during storage. Food Chem. 40(3): 293-300.
Selke, E. and Rohwedder, W.K. 1983. Volatile components from trilinolenin heated in air. JAOCS. 60(11):1853-1858.
Shields, P.G., Xu, G.X., Blot, W.J., Fraumeni, Jr. J.F., Trivers, G.E., Pellizzari, E.D., Qu, Y.H., Gao, Y.T. and Harris, C.C. 1995. Mutation from heated Chinese and U.S. cooking oils. J. Natl. Cancer Inst. 87:836-841.
Sepaniak, M.J., Powell, A.C., Swaile, D.F. and Cole, R.O. In Capillary Electrophoresis, Tgeory and Practice, Grossman, P. D., Colburn, J. C., Eds. Academic Press: San Diego, 1992; P159-189.
Takatsuki, K., Suzuki, S., Sato, N. and Ushizawa, I. 1985. Liquid chromatographic determination of polycyclic aromatic hydrocarbons in fish and shellfish. J. Assoc. Off. Anal. Chem. 68(5): 945-949.
Terabe, S., Miyashita, Y., Ishihama, Y. and Shibata, O. 1993. Cyclodextrin-modified micellar electrokinetic chromatography: separation of hydrophobic and enantiomeric compounds. 636:47-55.
Teschke, K., Hertzman, C. and Netten, C.V. 1989. Potential exposure of cooks to airborne mutagens and carcinogens. Environ. Res. 50:296-308.
Thiébuad, H.P., Knize, M.G., Kuzmicky, P.A, Felton, J.S. and Hsieh, D.P. 1994. Mutagenicity and chemical analysis of fumes from cooking meat. J. Agric. Food Chem. 42: 1502-1510.
Tuominen, J.P., Pyysalo, H.S. and Sauri, M. 1988. Cereal products as a source of polycyclic aromatic hydrocarbons. J. Agric. Food Chem. 36:118-120.
Vainiotalo, S. and Matveinen, K. 1993. Cooking fumes as a hygienic problem in the food and catering industries. Am. Ind. Hyg. Assoc. 54:376-382.
Vaessen, H.A.M.G., van de Kamp, C.G., and Jekel, A.A. 1988. Preparation and stability of ampouled polycyclic aromatic hydrocarbon solutions. Z. Lebensm. Unters. Forsch. 186:308-310.
Verzele, M. and Mussche, P. 1983. Monomeric and polymeric derivatization in reversed-phase high-performance liquid chromatographic materials. J.Chromatogr. 254:117-122.
Wang, G., Lee, A.S. Lewis, M. Kamath, B. and Archer, R.K. 1999. Accelerated solvent extraction and gas chromatography/mass spectrometry for determination of polycyclic aromatic hydrocarbons in smoked food samples. J. Agric. Food Chem. 47(3):1062-1066.
Wang, Z.Y., Khan, W.A., Bickers, D.R. and Mukhtar, H. 1989. Protection against polycyclic aromatic hydrocarbon induced skin tumor initiation in mice by green tea polyphenols. Carcinogenesis 10(2):411-415.
Wijeratne, M.C.P., Samarajeewa, U. and Rodrigo, M.C.P. 1996. Polycyclic aromatic hydrocarbons in coconut kernel products. J. Natl. Sci. Counc. Sri-Lanka 24(4):285-297.
Wise, S.A., Chesler, S.N., Hertz, H.S., Hilpert, L.R. and May, W.E. 1977. Chemically-bounded aminosilane stationary for the high-performance liquid chromatographic. Separation of polycyclic aromatic hydrocarbons. Anal. Chem. 49(14): 2306-2310.
Wise, S.A., Sander, L.C., and May, W.E. 1993. The determination of polycyclic aromatic hydrocarbons by liquid chromatography. J. Chromatogr. 642: 329-349.
Wu, S.C., Yen, G.C. and Sheu, F. 2001. Mutagenicity and identification of mutagenic compounds of fumes obtained from heating peanut oil. J. Food Prot. 64(2): 240-245.
Wu-Williams, A.H., Dai, X.D., and Blot, W. 1990. Lung cancer among women in north-east China. Br. J. Cancer 62:982-987.
Wu, J., Wong, M.K. Lee, H.K., Shi, C.Y. and Ong, C.N. 1997. Determination of polycyclic aromatic hydrocarbons in rougan, a traditional Chinese barbecued food, by capillary gas chromatography. Environ. Monit. Assess. 44 (1/3): 577-585.
Xin, X. and Hurtubise, R.J. 2000. Separation of polycyclic aromatic hydrocarbon metabolites by gamma-cyclodextrin-modified micellar electrokinetic chromatography. J. Liquid Chromatogra. Rel. Technol. 23(11):1657-1670.
Yan, C., Dadoo, R., Zhao, H., Zare, R.N. and Rakestraw, D.J. 1995. Capillary electromatography: analysis of polycyclic aromatic hydrocarbons. Anal. Chem. 67: 2026-2029.
Yeakub-Ali, M. and Cole, R.B. 1998. SFE plus C18 lipid cleanup method for selective extraction and GC/MS quantitation of polycyclic aromatic hydrocarbons in biological tissues. Anal Chem. 70(15): 3242-3248.
Yik, T.F., Ong, C.P., Khoo, S.B. and Lee, H.K. 1991. Separation of selected PAHs by using high performance capillary electrophoresis with modifiers. Enviro. Monit. Assess. 19: 73-81.
Yik, T.F., Ong, C.P., Khoo, S.B. and Lee, H.K. 1992. Separation of polycyclic aromatic hydrocarbons by micellar electrokinetic chromatography with cyclodextrin as modifiers. J. Chromatogr. 589: 33-338.
Yuco-Yabiku, H., Satou-Martins, M. and Takahashi, M.Y. 1993. Levels of benzo[a]pyrene and other polycyclic aromatic hydrocarbons in liquid smoke flavour and some smoked foods. Food Addit. Contam. 10(4): 399-405.
Ziegler, W., Garcia-Penalver, L., Preiss, U and Wallnoefer, P.R. 1999. Fate of nitropolycyclic aromatic hydrocarbons in artificially contaminated fruits and vegetables during food processing. Adv. Food Sci. 21(1/2): 54-57.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top