跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 14:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭元傑
研究生(外文):Yuan-Chieh Cheng
論文名稱:特徵子空間技術應用在天線陣列處理器之盲目訊號分離
論文名稱(外文):Subspace Approaches for Blind Signal Separation with Antenna Array Processors
指導教授:余金郎余金郎引用關係
指導教授(外文):Jung-Lang Yu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:108
中文關鍵詞:天線陣列處理器空間分隔多重存取盲目訊號分離同通道干擾訊號子空間限制投影波束合成
外文關鍵詞:antenna array processorsSpace Division Multiple Accessblind signal separationco-channel interferencesignal subspaceconstraint projection beamformer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無線通訊系統裡,影響系統性能的主要因素包括:從其他用戶端產生的同頻干擾 (Co-channel Interference, CCI)、符號間干擾 (Inter-symbol Interference, ISI) 和多路徑產生的信號衰落,而盲目訊號分離技術是利用天線陣列來取得發射訊號的空間特徵 (Spatial Signature),並藉由空間特徵的差異或信號的到達方向 (Direction of Arrival, DOA) 等信號之特性,正確地解析出我們所要的個別訊號源。所以我們可利用盲目訊號分離技術來減少同頻干擾的效應,和抑制多重路徑傳輸所造成的信號衰落現象,因而達成改善系統的性能,增加系統用戶的容量。盲目訊號分離技術可應用於空間分隔多重存取 (Space Division Multiple Access, SDMA) 的範圍,若有成功的盲目訊號分離技術,則我們可利用天線陣列的空間差異 (space diversity),讓使用者共用相同的參數(如載波或展頻碼),以增加系統用戶的容量和改善通訊品質。
在本篇論文中,我們提出特徵子空間DWILSP演算法,可利用訊號子空間(signal subspace) 技術及相關矩陣的特徵架構,達到提高DWILSP(Decoupled Weighted Iterative Least-square with Projection) 演算法的性能。在DWILSP演算法中,每一使用者之訊號估測與通道辨識是使用直接逆矩陣(direct matrix inversion, DMI) 波束合成,然而,直接逆矩陣波束合成則對於引導向量的誤差十分敏感,會導致訊號消除的效應,因此我們用限制投影(constraint projection)波束合成代替直接逆矩陣波束合成,使得估測待測訊號時的輸出訊號干擾雜訊比(output SINR)被提高,減輕訊號消除的效應。電腦模擬結果顯示特徵子空間DWILSP演算法在共通道 (co-channel) 數位訊號的盲目分離上優於DWILSP。

In wireless communication systems, the principal factors in system performance including the co-channel interference (CCI) from other users, the intersymbol interference (ISI), and the fading caused by multipath transmission. Blind signal separation (BSS) utilizes the antenna arrays to obtain the spatial signatures of transmitting signals. By using the signal properties such as the difference of the spatial signatures and direction of arrivals (DOA’s) of signals, the BSS techniques are able to recover each desired source correctly. So we can use these techniques to reduce the CCI and mitigate the fading phenomenon caused by multipath transmission. Blind signal separation can be applied to space division multiple access (SDMA). We can use the BSS techniques with the space diversity at antenna array to separate users which share the identical parameter like carrier frequency and spreading code. And further, we can increase the system capacity and improve the quality of communication.
The eigenspace-based DWILSP is presented in this thesis, which utilizes the eigenstructure of the correlation matrix to enhance the performance of the decoupled weighted iterative least-square with projection (DWILSP) algorithm. In the DWILSP the signal estimate is interpreted as the direct-matrix-inversion (DMI) beamforming problem. However, the DMI beamformer is sensitive to the steering vector errors, which cause the signal cancellation effects. We then use the constraint projection beamformer instead of the DMI beamformer to alleviate the signal cancellation, where the output signal-to-interference-plus-noise ratio (SINR) is increased during the estimate of signal of interest. Further, to reduce the computational complexity of the developed algorithm, an efficient implementation approach is proposed. Computer simulations are given to demonstrate that the eigenspace-based DWILSP outperforms the DWILSP.

中文摘要 i
ABSTRACT ii
誌謝 iii
CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1. Introduction 1
1.1 Space Division Multiple Access 2
1.2 Blind Signal Separation 3
1.3 Space-Time Processing 4
1.4 Review of Chapter Contents 6
CHAPTER 2. Basic Fundamental of Blind Signal Separation 8
2.1 Data Model 8
2.2 Problem Formulation 10
2.3 Iterative Least-Squares Methods 11
2.3.1 ILSP 12
2.3.2 ILSE 14
2.3.3 DWILSP 16
2.3.4 SIC-ILS 20
CHAPTER 3. Blind Separation of Finite Alphabet Digital Signals Using Constraint Projection Beamforming Techniques 23
3.1 Eigenspace-Based DWILSP 24
3.2 Simplification of Implementation 28
3.3 Consistency and Convergence 31
3.4 RILSP 34
3.5 Simulation Result 36
3.6 Computational Complexity 39
CHAPTER 4. Blind Estimation of FIR-MIMO Channels Using Linear Parameterization 51
4.1 System Description 52
4.2 Blind Identification 60
4.3 Bilinear Approaches 61
4.3.1 Linear Parameterization of the Channel Matrix 61
4.3.2 Second-Order Statistics 66
4.3.3 Algorithm for the Case of Single User and Single Channel 68
4.3.4 Identifiability Conditions 71
4.3.5 Extension to the Case of Multiple Users 73
4.3.6 Extension to the Case of Multiple Channels 74
4.3.7 Derivation of Subspace Method Using the Linear Parameterization 78
4.4 Simulation Procedure 80
4.5 Simulation Results 84
CHAPTER 5. Conclusions 93
REFERENCES 95

[1] A.J. Paulraj and C.B. Papadias, “Space-time processing for wireless communications,” IEEE Transaction on Signal Processing Magazine, pp.49-83, Nov. 1997.
[2] Tsuhan Chen, guest editor, “Highlights of statistical signal and array processing,” IEEE Transaction on Signal Processing Magazine, pp.21-64, Sep. 1998.
[3] J. Liberti, Jr., “Smart Antennas for Wireless Communications”, Prentice-Hall PTR, 1999.
[4] R.O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transaction on Antennas and Propagation, Vol.AP-34, No.3, pp.276-280, Mar. 1986.
[5] R. Roy and T. Kailath, “ESPRIT — estimation of signal parameters via rotational invariance techniques,” IEEE Transaction on Acoustics Speech and Signal Processing, Vol.37, No.7, pp.984-995, July 1989.
[6] S. Anderson, M. Millnent, M. Viberg and B. Wahlberg, “An adaptive array for mobile communication systems,” IEEE Transaction on Vehicular Technology, Vol.VT-40, No.1, pp.230-236, Feb. 1991.
[7] A.J. Weiss and B. Friedlander, “Array shape calibration using sources in unknown locations-A maximum likelihood approach,” IEEE Transaction on Acoustics Speech and Signal Processing, Vol.37, No.12, Dec. 1989.
[8] S. Talwar, M. Viberg and A. Paulraj, “Blind separation of synchronous co-channel digital signals using an antenna array-part I :algorithms,” IEEE Transaction on Signal Processing, Vol.SP-44, No.5, pp.1184-1197, May 1996.
[9] Ranheim, “A decoupled approach to adaptive signal separation using an antenna array,” IEEE Transaction on Vehicular Technology, Vol.VT-48, No.3, pp.676-682, May 1999.
[10] T. Li and N. Sidiropoulos, “Blind digital signal separation using successive interference cancellation iterative least squares,” IEEE Transaction on Signal Processing, Vol.48, No.11, pp.3146-3152, Nov. 2000.
[11] A.J. van der Veen, “An analytical constant modulus algorithm,” IEEE Transaction on Signal Processing, Vol.SP-44, No.5, pp.1136-1155, May 1996.
[12] Kannan, G. Mathew, and V.U. Reddy, “Blind separation of multiple co-channel bpsk signals arriving at an antenna array,” IEEE Transaction on Signal Processing Letters, Vol.SPL-2, No.9, pp.176-178, Sep. 1995.
[13] C.C. Lee and J.H. Lee, “An efficient method for blind digital signal separation of array data,” Signal Processing, Vol.77, Issue 2, pp.229-234, Sep. 1999.
[14] B.G. Agee, S.V. Chell, and W.A. Gardner, “Spectral self-coherence restoral: A new approach to blind adaptive signal extraction using antenna arrays,” Proceedings of IEEE, Vol.78, pp.753-767, Apr. 1990.
[15] J.F. Cardoso, “Blind signal separation: statistical principles,” Proceedings of IEEE, Vol.9, No.10, pp.2009-2025, Oct. 1998.
[16] M. Martone, “Adaptive multistage beamforming using cyclic higher order statistics (CHOS),” IEEE Transaction on Signal Processing, Vol.SP-47, No.10, pp.2867-2873, Oct. 1999.
[17] J.G. Proakis, “Digital Communications,” 3rd ed. New York: McGraw-Hill, 1995.
[18] H.L. Van Trees, “Detection, Estimation and Modulation Theory,” New York: Wiley, Vol. I , 1968.
[19] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE Transaction on Acoustics Speech and Signal Processing, Vol.ASSP-33, pp.387-392, Apr. 1985.
[20] G. Golub and V. Pereyra, “The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate,” SIAM J. Num. Anal., Vol.10, pp.413-432, 1973.
[21] P. Gill, W. Murray, and M. Wright, “Practical Optimization,” San Diego, CA: Academic, 1981.
[22] S.M. Kay, “Fundamentals of Statistical Signal Processing-Estimation Theory,” Englewood Cliffs, NJ: Prentice-Hall, 1993.
[23] S. Verdu, “Multiuser Detection,” Cambridge, U.K.: Cambridge Univ. Press, 1998.
[24] L. Chang and C.C. Yeh, “Performance of DMI and eigenspace-based beamformers,” IEEE Transaction on Antenna and Propagation, Vol.AP-40, No.11, pp.1336-1347, Nov. 1992.
[25] M. Zhang, M.H. Er and K.C. Tan, “Blind estimation of multiple co-channel digital signals using base station antenna arrays,”
http://www.icspat.com/db_area/97/97226.pdf
[26] S. Talwar, M. Viberg and A. Paulraj, “Blind estimation of multiple co-channel digital signals using an antenna array,” IEEE Signal Processing Letters, Vol.1, pp.29-31, Feb. 1994.
[27] W.A. Gardner, “A new method of channel identification,” IEEE Transaction on Communication, Vol.39, pp.813-817, June 1991.
[28] L. Tong, G. Xu and T. Kailath, “Blind identification and equalization based on second-order statistics: A time domain approach,” IEEE Transaction on Information Theory, Vol.40, pp.340-349, Mar. 1994.
[29] L. Tong, G. Xu, B. Hassibi and T. Kailath, “Blind channel identification based on second-order statistics: a frequency-domain approach,” IEEE Transaction on Information Theory, Vol.41, pp.329-334, Jan. 1995.
[30] L. Tong, G. Xu and T. Kailath, “Fast blind equalization via antenna arrays,” Proceedings of IEEE ICASSP, Vol. IV, pp.272-274, 1993.
[31] E. Moulines, P. Duhamel, J. Cardoso and S. Mayrargue, “Subspace methods for the blind identification of multichannel FIR filters,” IEEE Transaction on Signal Processing, Vol.43, pp.516-525, Feb. 1995.
[32] D. Slock, “Blind fractionally-spaced equalization, perfect-reconstruction filter banks and multichannel linear prediction,” Proceedings of IEEE ICASSP, Vol. IV, pp.585-588, 1994.
[33] G. Xu and H. Liu, “A deterministic approach to blind identification of multi-channel FIR systems,” Proceedings of IEEE ICASSP, Vol. IV, pp.581-584, 1994.
[34] F.R. Magee and J.G. Proakis, “Adaptive maximum-likelihood sequence estimation for signaling in the presence of intersymbol interference,” IEEE Transaction on Information Theory, Vol.IT-19, pp.120-124, Jan. 1973.
[35] G. Ungerboeck, “Adaptive maximum-likelihood receiver for carrier-modulated data transmission systems,” IEEE Transaction on Communication, Vol.COM-22, pp.624-636, May 1974.
[36] G. Picchi and G. Prati, “Blind equalization and carrier recovery using a ‘stop-and-go’ decision-directed algorithm,” IEEE Transaction on Communication, Vol.COM-35, pp.877-887, Sep. 1987.
[37] Z. Ding, “Blind equalization based on joint minimum MSE criterion,” IEEE Transaction on Communication, Vol.42, pp.648-654, Feb. 1994.
[38] N. Seshadri, “Joint data and channel estimation using fast blind trellis search techniques,” Proceedings of Globecom, pp.1659-1663, 1991.
[39] D. Yellin and B. Porat, “Blind identification of FIR systems excited by discrete-alphabet inputs,” IEEE Transaction on Signal Processing, Vol.41, pp.1331-1339, Mar. 1993.
[40] A. Swindlehurst, S. Daas and J. Yang, “Analysis of a decision directed beamformer,” IEEE Transaction on Signal Processing, Vol.43, pp.2920-2927, Dec. 1995.
[41] H. Liu and G. Xu, “A deterministic approach to blind symbol estimation,” IEEE Signal Processing Letters, Vol.1, pp.205-207, Dec. 1994.
[42] H. Liu and G. Xu, “Multiuser blind channel estimation and spatial channel pre-equalization,” Proceedings of IEEE ICASSP, pp.1756-1759, 1995.
[43] A.J. ver der Veen, S. Talwar and A. Paulraj, “Blind estimation of multiple digital signals transmitter over FIR channels,” IEEE Signal Processing Letters, Vol.2, pp.99-102, May 1995.
[44] A.J. ver der Veen, S. Talwar and A. Paulraj, “Blind identification of FIR channels carrying multiple finite alphabet signals,” Proceedings of IEEE ICASSP, pp.1213-1216, 1995.
[45] A.J. ver der Veen, S. Talwar and A. Paulraj, “A subspace approach to blind space-time signal processing for wireless communication systems,” IEEE Transaction on Signal Processing, Vol.45, No.1, Jan 1997.
[46] Z. Ding, “Multipath channel identification based on partial system information,” IEEE Transaction on Signal Processing, Vol. 45, pp.235-240, Jan. 1997.
[47] E. Moulines, P. Duhamel, J. Cardoso and S. Mayrargue, “Subspace methods for the blind idenfification of multichannel FIR filters,” IEEE Transaction on Signal Processing, Vol.43, pp.516-525, Feb. 1995.
[48] T.P. Krauss and M.D. Zoltowski, “Bilinear approach to multiuser second-order statistics-based blind channel estimation,” IEEE Transaction on Signal Processing, Vol.48, No.9, Sep. 2000.
[49] M.D. Zoltowski, D. Tseng and T. Thomas, “On the use of basis functions in blind equalization based on deterministic least squares,” Proceedings of Asilomar Conf. Signals, Syst., Comput., pp.816-822, Nov. 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top