跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 17:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林京甫
研究生(外文):Jing-Fu Lin
論文名稱:基極輸入技巧之設計與應用
論文名稱(外文):Design and Application of CMOS Bulk Input Technique.
指導教授:黃弘一
指導教授(外文):Hong-Yi Huang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:68
中文關鍵詞:基極輸入差動邏輯電路
外文關鍵詞:Bulk Inputdifferential logic circuits
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在積體電路中,數位電路是實現晶片功能的最主要部分。邏輯電路又佔了數位電路中的絕大部分。在論文中,首先我們回顧歷史,舉出十多種較為常見的邏輯電路來做簡單的介紹。
然後我們提出基極輸入差動邏輯電路,以往的邏輯電路中只能接固定訊號的基極端在我們的努力下也成為可以接收訊號的輸入端,大幅度的改善了電路設計的靈活性。我們在輸入元件的基極端接上一個推舉電路來避免半導體接面的順向偏壓困擾。基極輸入差動邏輯電路可以在不消耗靜態功率的條件下有互補的全擺幅輸出。
從模擬結果中基極輸入差動邏輯電路被證明比起傳統的差動邏輯電路還要高速和低功率。在兩個輸入以上邏輯閘中,消耗功率和延遲時間的乘積改善了百分之十三以上。為了驗證基極輸入差動邏輯電路是否如同模擬結果,我們設計了一個測試晶片,晶片是一個頻率合成器其中的可程式化除頻器是使用基極輸入差動邏輯電路設計的,之中的八輸入基極輸入差動邏輯閘在模擬中可以操作在二十億赫茲的高速。測試晶片目前正在台積電製造中。

In VLSI circuits, the digital circuits are the important parts in a chipset. The logic circuits occupy the almost of digital circuits. In this paper, we make a logic circuits history review. Some popular logic circuits will be introduced.
Then the bulk input differential logic (BIDL) is presented. The bulk terminals of conventional circuits always connect to highest or lowest voltage. The bulk input differential logic circuits make the bulk terminals able to receive signals. It improves the logic design flexibility into a wide margin. A boost circuit is employed to the bulk terminal of the input device to avoid the p/n junction forward bias problem. The BIDL can generate a pair of complementary full-swing output signals without dc power dissipation.
It is shown that the BIDL has better speed and power performance compared to the conventional differential logic circuits in simulation results. In more than two inputs logic gates, the improvement of power-delay product is more than thirteen percentages. To verify the BIDL is good as simulation results, we design a test chip. The chip is a frequency synthesizer which uses the BIDL in the prescaler design. In the prescaler, an 8-inputs BIDL gate can operate at 2GHz in TSMC 0.25um process simulation. The test chip is being fabricated.

摘要 i
Abstract ii
致謝 iv
List of Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction………………………………………………………..…… 1
1.1 Static CMOS logic family…………………………………………………..…… 2
1.2 Pseudo NMOS logic family…………………………………………………….... 4
1.3 Dynamic CMOS logic family…………………………………………………..... 6
1.4 Pass transistor and transmission gate logic………………………………………. 8
1.5 Differential logic family………………………………………………………….. 9
1.5.1 Differential cascode voltage switch logic…………...………………………9
1.5.2 Full-swing differential logic………………………………………………..10
1.5.3 Differential current switch logic……………………………………………11
1.5.4 Current sensing differential logic…………….…………………………….12
1.5.5 Sample-set differential logic……………………………………………….13
1.5.6 Latched CMOS differential logic…………………………………………..14
1.5.7 Enable/disable CMOS differential logic…………………………………...15
1.5.8 Low-voltage differential current switch logic…………………...…………16
1.6 Threshold logic gate……………………………………………………………...17
Chapter 2 Bulk Input Differential Logic…………………………………………..18
2.1 Current latched sense amplifier…………………………………………..………19
2.2 Boost circuits…………………………………………………………………..…20
2.3 Multiple inputs boost circuit……………………………………………………...23
2.4 The BIDL topology…………………………………………………………....…24
Chapter 3 Design Examples………………………………………………………..26
3.1 BIDL AND2/NAND2 gate……………………………………………………….26
3.2 BIDL XOR2/NXOR2 gate……………………………………………………….27
3.3 BIDL OR3/NOR3 gate……………………………………………………...……29
3.4 BIDL AND4/NAND4 gate……………………………………………………….30
3.5 BIDL MUX2 gate…………………………………………………………...……32
3.6 BIDL OAI (Q=A.(B+C+D)) gate……………………………………………….34
3.7 BIDL AOI (Q=A+BC+BD+DE) gate……………………………………………35
3.8 BIDL AOI (Q=A+BCDE) gate……………………………………………….….37
3.9 BIDL AND5/NAND5 gate………………………………………………………39
3.10Simulation results comparison…………………………………………………..41
3.10.1 Logic circuits with no sense amplifier……………………………………41
3.10.2 Logic circuits with sense amplifier……………………………………….42
Chapter 4 Frequency synthesizer……….…………………………………………44
4.1 Circuit design………………………..……………………………………...……44
4.1.1 Voltage Control Oscillator………..………………………………………..44
4.1.2 Phase Frequency Detector………………………………………………….45
4.1.3 Charge Pump……………………………………………………………….46
4.1.4 Prescaler……………………………………………………………………47
4.2 Implementation…………………...………………………………………………48
Chapter 5 Conclusions and Future work………………………………………….51
5.1 Conclusions………………………………………………………………………51
5.2 Future Work…………………………………………………………………...…52

[1]. F. M. Wanlass, “Low stand-by power complementary field effect circuitry,” U.S. patent No. 3356858, 1967.
[2]. M. J. Riezenman, “Wanlass’s CMOS circuit,” IEEE spectrum. pp. 44, May, 1991.
[3]. M. Karnaugh, “The map method for synthesis combinational logic circuits.” AIEE Trans. Commune. Electron., Vol.72 pp.593-599, Nov., 1953.
[4]. C. Piguet, J. Zahnd, A. Stauffer, and M. Bertarionne, “A Metal-oriented layout structure for CMOS logic.” IEEE. J. Solid-State Circuits, Vol.SC-19, pp.425-436, June, 1984.
[5]. R. H. Krambeck, C. M. Lee, and H. S. Law, “High speed compact circuits with CMOS,” IEEE J., Solid-State Circuits, SC-17, pp. 614-619, 1982.
[6]. F. Lu, and H. Samueli, “A high speed CMOS full adder cell using a new circuit design technique adaptively biased pseudo-NMOS logic,” IEEE International Symposium, Circuits and Systems, pp. 562-565, 1990.
[7]. C. S. Wallace, “A suggestion for a Fast Multiplier.” IEEE Trans. on Electronic Computers, Vol. EC-13, pp. 14-17, Feb., 1964.
[8]. J. Yuan and C. Svensson,” High-speed CMOS circuit technique,” IEEE. J. Solid-State Circuits, Vol. 24, pp.62-70, Feb. 1989.
[9]. V. Friedman and S. Liu, “Dynamic logic CMOS circuits.” IEEE. J. Solid-State Circuits, Vol. SC-19, pp.263-266, Apr., 1984.
[10]. G. Yee and C. Sechen, “ Clock-delayed domino for dynamic circuit design.” IEEE. Trans. on VLSI Systems, Vol. 8, No. 4, Aug., 2000.
[11]. C. U. O. Kim, S. O. Jung, K. H. Baek, and S. M. Kang, “Parallel dynamic logic with speed-enhanced skewed static logic.“ IEEE. ISCAS, pp. 756-759, May, 2000.
[12]. P. Larsson and C. Svensson, “Noise in digital dynamic CMOS circuits.” IEEE. J. Solid-State Circuits, Vol. 29, pp. 655-662, June, 1994.
[13]. G. Hover, G. Yee, and C. Sechen, “ Locally-Clocked dynamic logic.” IEEE. Midwest symposium on Circuits and Systems pp.18-21, 1998.
[14]. J. A. Pretorius, A. S. Schubat, and C. A. T. Salama, “Analysis and design optimization of domino CMOS logic with application to standard cells,” IEEE J. Solid-State Circuits, Vol. SC-20, pp. 523-530, Apr., 1985.
[15]. M. Shoji, “FET scaling in Domino CMOS gates,” IEEE J. Solid-State Circuits, Vol. SC-20, No. 5, pp. 1067-1071, Oct., 1985.
[16]. G. Yee and C. Sechen, “Clock-delayed domino logic for adder and combinational logic design,” in Proc. Of the IEEE International Conference on Computer Design, pp. 332-337, 1996.
[17]. N. F. Goncalves and H. J. Deman, “ NORA: A race free dynamic CMOS technique for pipelined logic structures,” IEEE. J. Solid-State Circuits, Vol. SC-18, pp.261-266, June, 1983.
[18]. C. Y. Wu, K. H. Cheng, and J. S. Wang, “Analysis and design of a new race-free four-phase CMOS logic,” IEEE. J. Solid-State Circuits, Vol. 28, No. 1, Jan., 1993.
[19]. D. Radhakrishnan, S. R. Whitaker, and G. K. Maki, “Formal design procedures for pass transistor switching circuits,” IEEE J. Solid-State Circuit, SC-20, pp. 531-536, 1985.
[20]. A. Jaekel, S. Bandyopadhyay, and G. A. Jullien, “Design of Dynamic Pass Transistor Logic Circuits Using 123 Decision Diagrams,” IEEE Trans. Circuit and Systems, Vol. 45, No. 11, pp. 1172-1181, Nov., 1998.
[21]. N. Zhuang and H. Wu, “ A New design of the CMOS full adder,” IEEE. J. Solid-State Circuits, Vol. 27, No. 5, pp. 840-844, May, 1992.
[22]. K. Yano, “A 3.8ns CMOS 16x16 multiplier using complementary pass transistor logic,” IEEE. CICC, 1989.
[23]. L. C. M. G. Pfennings, W. G. J. Mol, J. J. J. Bastiaens, and J. M. F. V. Dijk, “Differential split-level CMOS logic for subnanosecond speeds.” IEEE. J. Solid-State Circuits, Vol. SC-20, pp.1050-1055, Oct., 1985.
[24]. C. Y. Wu, J. S. Wang, and M. K. Tsai, “The analysis and Design of CMOS multidrain logic and stacked multidrain logic.” IEEE. J. Solid-State Circuits, Vol. SC-22, pp. 47-56, Feb., 1987.
[25]. J. S. Wang, C. Y. Wu, and M. K. Tsai, “CMOS nonthreshold logic (NTL) and Cascode nonthreshold logic (CNTL) for high-speed applications,” IEEE. J. Solid-State Circuits, Vol. SC-24, pp. 779-786, June, 1989.
[26]. C. Y. Wu and H. Y. Huang, “ Design and application of pipelined dynamic CMOS ternary logic and simple ternary differential logic.” IEEE. J. Solid-State Circuits, Vol. 28, No. 8, Aug., 1993.
[27]. William R. Griffin, and Lawrence G. Heller, “Clocked Differential Cascode Voltage Switch Logic Systems,” U.S. patent No. 4570084, 1986.
[28]. L. G. Heller, W. R. Griffin, J. W. Davis, and N. G. Thoma, “Cascode voltage switch logic: a differential CMOS logic family,” Proceedings of IEEE International Solid-State Circuits Conference, pp.16-17, 1984.
[29]. K. M. Chu and D. L. Pulfrey, “ Comparison of CMOS circuit techniques: Differential cascode voltage switch logic versus conventional logic.” IEEE. J. Solid-State Circuits, Vol. 22, pp. 528-532, Aug., 1987.
[30]. M. Matsui and J. B. Burr, “A low-voltage 32 x 32-bit multiplier in dynamic differential logic.” IEEE. Symposium on low power electronics, pp. 34-35, 1995.
[31]. D. Somasekhar and k. Roy, “Differential current switch logic: A low power DCVS logic family.” IEEE. J. Solid-State Circuits, Vol. 31, pp. 981-991, July, 1996.
[32]. J. Park, J. Lee, and W. Kim, “Current sensing differential logic (CSDL) for low-power and high-speed systems.” IEEE. ISCAS, Vol. 2, pp. 129-132, 1998.
[33]. T. A. Grotjohn and B. Hoefflinger, “ Sample-set differential logic (SSDL) for complex high speed VLSI.” IEEE. J. Solid-State Circuits, Vol. 21, pp.367-369, Apr., 1986.
[34]. C. Y. Wu and K. H. Cheng, “ Latched CMOS differential logic (LCDL) for complex high-speed VLSI.” IEEE. J. Solid-State Circuits, Vol.26 pp.1324-1328, Sep., 1991.
[35]. S. L. Lu, “ Implementation of iterative networks with CMOS differential logic.” IEEE. J. Solid-State Circuits, Vol. 23, pp. 1013-1017, Aug., 1988.
[36]. S. L. Lu and L. M. D. Ercegovac,” Evaluation of two-summand adders implemented in ECDL CMOS differential logic.” IEEE. J. Solid-State Circuits, Vol. 26, pp. 1152-1160, Aug., 1991.
[37]. D. Somasekhar and K. Roy, “LVDCSL: A high fan-in, high-performance, low-voltage differential current switch logic family.” IEEE. Trans. VLSI Systems, Vol. 6, No. 4, Dec., 1998.
[38]. M. J. Avedillo, J. M. Quintana, A. Rueda and E. Jimenez, “Low Power CMOS threshold logic gate,” Electron. Letters, Vol. 31, No. 25, pp. 2157-2159, 1995.
[39]. Joseph Richard Cavaliere, “Sense Amplifier,” U.S. patent No. 3879621, 1975.
[40]. G. V. Kristovski and Y. L. Pogrebnoy, “New sense amplifier for small-swing CMOS logic circuits.” IEEE. Trans. Circuits and Systems, Vol. 47, No. 6, pp. 576-575, June, 2000.
[41]. W. S. T. Yan and H. C. Luong, “A 900-MHz CMOS Low-Phase-Noise Voltage-Controlled Ring Oscillator.” IEEE Trans. Circuits and Systems, Vol.48, No.2, pp. 216-221, Feb., 2001.
[42]. D.Mijuskovic, M.Bayer, T.Chomicz, N.Garg, F.James, P. McEntarfer, and J.Porter, “Cell-Based Fully Integrated CMOS Frequency Synthesizers.” IEEE J. Solid-State Circuits, Vol.29, No. 3, pp.271-279, Mar., 1994.
[43]. I.A.Young, “A PLL Clock Generator with 5 to 110MHz of Lock Range for Microprocessors,” IEEE J., Solid-State Circuits, Vol.27, pp.1599-1607, Nov., 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top