|
References [1] Ludwig Arnold, Stochastic Differential Equation: Theory and Applica-tions, 1974, pp. 202-210. [2] R. W. Brockett, Nonlinear systems and nonlinear estimation theory, in The Mathematics of Filtering and Identification and Application, M. Hazewinkel and J. S. Willems, eds., Reidel, Dordrecht, 1981. [3] R. W. Brockett and J. M. C. Clark, The geometry of the conditional density functions, in Analysis and Optimization of Stochastic Systems, O. L. R. Jacobs et al., eds., Academic Press, New York, 1980, pp. 299-309. [4] R. W. Brockett, Nonlinear control theory and differential geometry, In Proc. Internat. Conf. Mathematicians, 1983, pp. 1357-1368. [5] J. Chen, S. S.-T. Yau and C. W. Leung, Finite-dimensional filters with nonlinear drift VIII: Classification of finite-dimensional estimation alge-bras of maximal rank with state-space dimension 4, 1993, pp. 2126-2130. [6] J. Chen and S. S. -T. Yau, Finite dimensional Filters with nonlinear drift VII: Mitter conjecture and structure of , SIAM J. Control and Optimization, Vol. 35, No. 4, July 1997, pp 1116-1131. [7] J. Chen, S. S.-T. Yau and C. W. Leung, Finite-dimensional filters with nonlinear drift VI: classification of finite-dimensional estimation algebras of maximal rank with state-space dimension 3, SIAM J. Control and Optimization, Vol. 34, No. 1, 1996, pp. 179-198. [8] J.Chen,On uniquity of Yau filters,Proceedings of the American Control Conference(Baltimore,Maryland), June 1994, pp. 252-254. [9] W. L. Chiou and S. S. -T. Yau, Finite-dimensional filters with nonlin-ear drift II: Brockett’s problem on classification of finite-dimensional estimation algebras,SIAM J. Control and Optimization, Vol. 32, No. 1, January 1994, pp. 297-310. [10] W. L. Chiou, A note on estimation algebras on nonlinear filtering theory, Systems and Control Letters, Vol. 28, 1996, pp. 55-63. 1
|