跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李康莊
研究生(外文):Lee, Kang-Chuang
論文名稱:製程能力指標CNp(u,v)估計式之模擬研究
論文名稱(外文):A Simulation Study on the Estimators of the Process Capability Index CNp(u,v)
指導教授:陳思勉陳思勉引用關係
指導教授(外文):Chen, Sy-Mien
學位類別:碩士
校院名稱:輔仁大學
系所名稱:數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
中文關鍵詞:製程能力指標族CNp(uv)分位點估計式Empirical methodPearn and Chen method自助抽樣法
外文關鍵詞:process capability indices CNp(uv)quantile estimatorEmpirical methodPearn and Chen methodBootstrap samping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  製程能力指標PCI ( process capability index )係為呼應一些缺乏統計訓練背景的經理人有關於「將製程能力資訊融合在單一數據」之需求而產生。其為一無單位指標,主要可看出一個製程是否具有製造符合製程規格產品的能力,目前於文獻中可考者眾。Pearn及Chen ( 1997 ) 提出一製程能力指標族CNp(u,v),完全不受限有關於常態製程假設。根據定義,其為三個分位點 ( .00135th quantile, .5th quantile, .99865th quantile ) 之函數,而該三個分位點在實務中一般是未知的。本論文之研究內容首先透過此三個分位點的兩種估計式提供CNp(u,v)的估計式,接著對CNp(u,v)的估計式,做小樣本及大樣本之下的比較研究。

A process capability index is a numerical measure which provides information on whether a production process is capable of producing items within the specification limits predetermined by the designer. Pearn and Chen (1997) proposed a class of capability indices CNp(u,v) to accommodate cases where the underlying distributions may not be normal. The current indices CNp(u,v) are functions of quantiles which may not be known. In this article, we apply two quantiles estimators to estimate the class of indices CNp(u,v), and compares these two estimators of indices CNp(u,v) in many different sample sizes.

第一節 緒論……………………………………………1
第二節 符號……………………………………………7
第三節 電腦模擬
3.1 參數設定…………………………………………9
3.2 抽樣法……………………………………………11
第四節 模擬結果分析
4.1 自助抽樣法………………………………………13
4.2 重複取樣法………………………………………31
4.3 綜合比較…………………………………………35
第五節 結論……………………………………………38
參考文獻…………………………………………………39
附錄一……………………………………………………I
附錄二……………………………………………………XIII

[1]. Chan, L. K., Cheng, S.W., and Spring, F. A. “New Measure of Process Capability Index: Cpm.” Journal of Quality Technology, 20 (1998), 162-175.
[2]. Chen, K. S., and Pearn, W. L. “An Application of Non-normal Process Capability Indices.” Quality and Reliability Engineering International, 13 (1997), 355-360.
[3]. Chen, S. M., and Hsu, Y. S. “Asymptotic Analysis of Estimators for CNp(u,v) Based on Quantile Estimators.” Journal of Nonparametric Statistics, (2001), In Press.
[4]. Clement, J. A. “Process Capability Calculations for Non-normal Distributions.” Quality Progress, 20 (1989), 95-100.
[5]. Efron, B., and Tibshirani, R. J. An Introduction to the Bootstrap. Chapman and Hall, 1993.
[6]. Kaigh, W. D., and Lachenbruch, P. A. “A Generalized Quantile Estimator.” Commun, Statist.-Theor. Math., 11(19) (1982), 2217-2238.
[7]. Kane, V. E. “Process Capability Indices.” Journal of Quality Technology, 18 (1986), 41-52.
[8]. Kotz, S., and Lovelace, C. R. Process Capability Indices in Theory and Practice. Arnold, 1998.
[9]. Kotz, S., and Johnson, N. L. Process Capability Indices. Chapman and Hall, 1993.
[10]. Pearn, W. L., Kotz, S., and Johnson, N. L. “Distribution and Inferential Properties of Process Capability Indices.” Journal of Quality Technology, 24 (1992), 216-231.
[11]. Serfling, R. J. Approximation Theorems of Mathematical Statistics. John Wiley and Sons, 1980.
[12]. , K. “A Unified Approach to Capability Indices.” Statistical Sinica, 5 (1995), 805-820.
[13]. Venables, W. N., and Ripley, B. D. Modern applied statistics with S-Plus. Springer, 1999.
[14]. Zimmer, L. S., and Hubele, N. F. “Qnantiles of the Sampling Distribution of Cpm.” Quality Engineering, 10(2) (1997), 309-329.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top