跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳謙邑
論文名稱:衝擊噴流對散熱片熱傳效應影響之研究
論文名稱(外文):Effects of Impinging Jet Flow on the Heat Transfer of Heat Sinks
指導教授:李弘毅李弘毅引用關係
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:衝擊噴流散熱片紅外線熱影像
外文關鍵詞:Impingement jetHeat sinkInfrared thermal image
相關次數:
  • 被引用被引用:4
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
衝擊噴流空氣冷卻具有設備簡單、高可靠度及低成本等特性,而普遍應用於電子設備的溫度控制。但由於先天條件上的限制,此種冷卻方式通常需要搭配散熱片才能發揮最大效率,因此散熱片幾何外型的適當設計,對於增加熱傳效率與降低系統工作溫度具有決定性的影響。
本論文是以實驗方式探討散熱片幾何外型的最佳化。在固定加熱量的條件下,藉由改變鰭片的寬度與長度以及噴嘴至鰭片頂部的距離等參數,進行特定雷諾數下的散熱片最佳化。研究中發現,增加噴嘴流速可以使散熱片散熱效益增大,但是其效果卻會隨著雷諾數的增加而逐漸減緩;在鰭片寬度的影響上,當散熱片在自然對流或是低雷諾數的衝擊噴流時,其熱傳效益會隨著鰭片寬度的增加而降低,這是因為在散熱片底面積固定的原則下,增加鰭片寬度將導致流道寬度的減少,而過窄的流道寬度將導致自然對流不易產生或造成噴流無法順利進入散熱片內部進行冷卻。當散熱片於高雷諾數的衝擊噴流時,噴流不但擁有較大的質量流率,並能夠順利的進入流道直接衝擊散熱片底部進行冷卻,此時鰭片寬度的增加將有助於散熱面積提升,進而提供更佳的散熱片散熱效益。
關鍵字:衝擊噴流、散熱片、紅外線熱影像

The impingement air cooling system is widely utilized for controlling the temperature of electrical equipments because of its characteristic of simplicity, high reliability, and low cost. This kind of cooling method usually needs to be combined with heat sinks to achieve the highest efficiency. How to design the geometrical shape properly becomes the determinant factor for increasing heat transfer and decreasing the working temperature.
In this thesis, an experimental method is used to investigate the optimal shape design of the heat sinks. The optimal design at a specific Reynolds number can be obtained by changing the width and the height of the fin and the distance between the nozzle and the tip of the fin at a constant heating rate. The research reveals that increasing the flow velocity of the impingement jet can increase the heat transfer of the heat sink. However, the enhancement of heat transfer decreases gradually as the Reynolds number increases. The heat transfer decreases with increasing fin width for natural convection and low Reynolds number impingement jets. This is because the flow area reduces as the fin width increases for a specified base area of the heat sink. Thus the natural convection cannot be generated easily and the impingement jet flowing into the heat sink to cool is retarded. Impingement jet not only has large amount of flow rate but also can impinge and cool the bottom of heat sink directly at high Reynolds number. The heat transfer area of the heat sink increases with fin width. Thus it provides a higher heat transfer rate.
Keywords:Impingement jet, Heat sink, Infrared thermal image.

目錄
摘要 I
ABSTRACT II
目錄 IV
圖錄 VIII
表錄 XI
符號說明 XII
一、前言 1
二、文獻回顧 2
2.1 電子元件的散熱 2
2.1.1 自然對流冷卻 3
2.1.2 橫向流冷卻 5
2.1.3 衝擊噴流冷卻 6
2.2 各型散熱片之性能比較 7
2.3 各型散熱片之最佳化設計 8
2.3.1 平行板鰭片 8
2.3.2 柱形鰭片陣列 9
2.4 紅外線熱影像之應用 11
三、散熱片熱傳效益的評估 13
3.1 整體熱傳速率 13
3.2 熱阻 14
四、紅外線熱影像技術 15
4.1 序論 15
4.2 熱輻射遙測的歷史 15
4.3 熱紅外線原理 16
4.3.1 電磁光譜 16
4.3.2 熱輻射大氣視窗 16
4.3.3 黑體輻射 17
4.3.4 熱輻射定律 18
4.3.5 非黑體放射 19
五、實驗設備與方法 22
5.1 實驗設備 22
5.1.1 紅外線熱影像測溫儀 22
5.1.2 紅外線熱影像分析軟體 22
5.1.3 衝擊噴流裝置 23
5.1.4 實驗模型 23
5.1.5 加熱裝置 24
5.1.6 絕熱裝置 25
5.1.7 流量量測裝置 26
5.1.8 溫度量測裝置 26
5.2 實驗方法 27
5.2.1 紅外線熱量測技術 27
5.2.2 放射率計算 29
5.2.3 實驗環境 30
5.2.4 實驗步驟 30
5.2.5 實驗數據處理 32
六、結果與討論 41
6.1 表面溫度 41
6.1.1 自然對流 42
6.1.2 衝擊噴流 43
6.2 散熱片幾何外型的效應 45
6.2.1 衝擊距離的效應 45
6.2.2 鰭片寬度的效應 46
6.2.3 鰭片長度的效應 46
6.3 散熱片在各種流場下的熱阻 47
6.3.1 散熱片在自然對流下的散熱效益 48
6.3.2 散熱片在衝擊噴流Re=5000下的散熱效益 48
6.3.3 散熱片在衝擊噴流Re=10000下的散熱效益 49
6.3.4 散熱片在衝擊噴流Re=15000下的散熱效益 49
6.3.5 散熱片在衝擊噴流Re=20000下的散熱效益 49
6.3.6 散熱片在不同衝擊距離下的散熱效益 50
七、結論與未來展望 69
7.1 結論 69
7.2 未來展望 70
參考資料 71
圖錄
圖5-1 衝擊噴流實驗架構圖 33
圖5-2 紅外線熱影像分析軟體 34
圖5-3 衝擊噴流系統示意圖 35
圖5-4 各型散熱片示意圖 36
圖5-5 各型散熱片實體 37
圖5-6 加熱塊尺寸圖 38
圖6-1 W=6.5mm、H=35mm於自然對流之表面溫度分佈 51
圖6-2 W=6.5mm、H=40mm於自然對流之表面溫度分佈 51
圖6-3 W=6.5mm、H=45mm於自然對流之表面溫度分佈 51
圖6-4 W=8.0mm、H=35mm於自然對流之表面溫度分佈 52
圖6-5 W=8.0mm、H=40mm於自然對流之表面溫度分佈 52
圖6-6 W=8.0mm、H=45mm於自然對流之表面溫度分佈 52
圖6-7 W=9.5mm、H=35mm於自然對流之表面溫度分佈 53
圖6-8 W=9.5mm、H=40mm於自然對流之表面溫度分佈 53
圖6-9 W=9.5mm、H=45mm於自然對流之表面溫度分佈 53
圖6-10 W=6.5mm、H=35mm於Re=5000之表面溫度分佈 54
圖6-11 W=6.5mm、H=40mm於Re=5000之表面溫度分佈 54
圖6-12 W=6.5mm、H=45mm於Re=5000之表面溫度分佈 54
圖6-13 W=8.0mm、H=35mm於Re=5000之表面溫度分佈 55
圖6-14 W=8.0mm、H=40mm於Re=5000之表面溫度分佈 55
圖6-15 W=8.0mm、H=45mm於Re=5000之表面溫度分佈 55
圖6-16 W=9.5mm、H=35mm於Re=5000之表面溫度分佈 56
圖6-17 W=9.5mm、H=40mm於Re=5000之表面溫度分佈 56
圖6-18 W=9.5mm、H=45mm於Re=5000之表面溫度分佈 56
圖6-19 W=6.5mm、H=35mm於Re=10000之表面溫度分佈 57
圖6-20 W=6.5mm、H=40mm於Re=10000之表面溫度分佈 57
圖6-21 W=6.5mm、H=45mm於Re=10000之表面溫度分佈 57
圖6-22 W=8.0mm、H=35mm於Re=10000之表面溫度分佈 58
圖6-23 W=8.0mm、H=40mm於Re=10000之表面溫度分佈 58
圖6-24 W=8.0mm、H=45mm於Re=10000之表面溫度分佈 58
圖6-25 W=9.5mm、H=35mm於Re=10000之表面溫度分佈 59
圖6-26 W=9.5mm、H=40mm於Re=10000之表面溫度分佈 59
圖6-27 W=9.5mm、H=45mm於Re=10000之表面溫度分佈 59
圖6-28 W=6.5mm、H=35mm於Re=15000之表面溫度分佈 60
圖6-29 W=6.5mm、H=40mm於Re=15000之表面溫度分佈 60
圖6-30 W=6.5mm、H=45mm於Re=15000之表面溫度分佈 60
圖6-31 W=8.0mm、H=35mm於Re=15000之表面溫度分佈 61
圖6-32 W=8.0mm、H=40mm於Re=15000之表面溫度分佈 61
圖6-33 W=8.0mm、H=45mm於Re=15000之表面溫度分佈 61
圖6-34 W=9.5mm、H=35mm於Re=15000之表面溫度分佈 62
圖6-35 W=9.5mm、H=40mm於Re=15000之表面溫度分佈 62
圖6-36 W=9.5mm、H=45mm於Re=15000之表面溫度分佈 62
圖6-37 W=6.5mm、H=35mm於Re=20000之表面溫度分佈 63
圖6-38 W=6.5mm、H=40mm於Re=20000之表面溫度分佈 63
圖6-39 W=6.5mm、H=45mm於Re=20000之表面溫度分佈 63
圖6-40 W=8.0mm、H=35mm於Re=20000之表面溫度分佈 64
圖6-41 W=8.0mm、H=40mm於Re=20000之表面溫度分佈 64
圖6-42 W=8.0mm、H=45mm於Re=20000之表面溫度分佈 64
圖6-43 W=9.5mm、H=35mm於Re=20000之表面溫度分佈 65
圖6-44 W=9.5mm、H=40mm於Re=20000之表面溫度分佈 65
圖6-45 W=9.5mm、H=45mm於Re=20000之表面溫度分佈 65
圖6-46 自然對流時,鰭片寬度對熱阻之影響 66
圖6-47 雷諾數Re=5000時,鰭片寬度對熱阻之影響 66
圖6-48 雷諾數Re=10000時,鰭片寬度對熱阻之影響 67
圖6-49 雷諾數Re=15000時,鰭片寬度對熱阻之影響 67
圖6-50 雷諾數Re=20000時,鰭片寬度對熱阻之影響 68
圖6-51 W=8.0mm、H=40mm時,衝擊距離對熱阻之影響 68
表錄
表5-1 紅外線熱影像測溫儀規格 39
表5-2 各型散熱片規格 40

1. Oktay, S., Hannemann, R., and Bar-Cohen, A., “ High Heat from a Small Package,” Mechanical Engineering, Vol. 108, No. 3, pp. 36-42, 1986.
2. Moffat, R. J., and Anderson, A. M., G., “Applying Heat Transfer Coefficient Data to Electronics Cooling,” ASME Journal of Heat Transfer, Vol. 112, pp. 882-890, 1990.
3. Chu, R. C., “Heat Transfer on Electronic System,” Proceeding of the 8th International Heat Transfer Conference, San Francisco, CA, pp. 36-42, 1986.
4. Nakayama, W., “Thermal Management of Electronic Equipment,” in advances in Thermal Modeling of Electronic Components and System, Bar-Cohen, A. Eds., Hemisphere, Washington, DC, Vol. 1, pp. 1-78, 1988.
5. Elenbaas, W., “Heat Dissipation of Parallel Plates by Free Convection,” Physica, Vol. 9, pp. 1-28, 1942
6. Naylor, D., Floryan, J. M., and Tarasuk, J. D., “A Numerical Study of Developing Free Convection between Isothermal Vertical Plates,” ASME Journal of Heat Transfer, Vol. 113, pp. 620-626, 1991.
7. Tanda, G., “Experiment on Natural Convection from Two Staggered Vertical Plates,” International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 533-543, 1995.
8. Hacohen, J., Chiu, T. W., and Wragg, A. A., “Forced and Free Convective Heat Transfer Coefficients for a Model Printed Circuit Board Channel Geometry,” Experimental Thermal and Fluid Science, Vol. 10, pp. 327-334, 1995.
9. Floryan, J. M., and Novak, M., “Free convection heat transfer in multiple vertical channels,” International Journal of Heat and Fluid Flow, Vol. 16, pp. 244-253, 1995.
10. Rao, V., and Venkateshan, S. P., “Experiment Study of Free Convection amd Radiation in Horizontal Fin Arrays,” International Journal of Heat and Mass Transfer, Vol. 39, No. 4, pp. 779-789, 1996.
11. Ledezma, G., and Bejan, A., “Heat Sink with Sloped Plate Fins in Natural and Forced Convection,” International Journal of Heat and Mass Transfer, Vol. 39, No. 9, pp. 1773-1783, 1996.
12. Harahap, F., and Setio, D., “Correlations for Heat Dissipation and National Convection Heat-Transfer from Horizontally-Based, Vertically-Finned Arrays,” Applied Energy , Vol. 69, pp. 29-38, 2001.
13. Harahap, F., and McManus H. N., “Natural-Convection Heat Transfer form Horizontal Rectangular Fin Arrays,” ASME Journal of Heat Transfer, Vol. 89, pp. 32-38, 1967.
14. Leung, C. W., and Probert, S. D., “Heat-Exchanger Performance: Effect of Orientation,” Applied Energy , Vol. 33, pp. 235-252, 1989.
15. Babus’Haq, R. F., Akintunde, K., and Probert, S. D., International Journal of Heat and Fluid Flow, Vol. 16, pp. 50-55, 1995.
16. Thombre, S. B., Sukhatme, S. P., “Turbulent Flow Heat Transfer and Friction Factor Characteristics of Shrouded Fin Arrays with Uninterrupted Fins,” Experimental Thermal and Fluid Science, Vol. 10, pp. 388-396, 1995.
17. Sukhatme, S. P., “A Text Book on Heat Transfer,” 3ed ed., Orient Longman, Bombay, 1989.
18. Naik, S., Probert, S. D., and Bryden I. G., “Heat transfer characteristics of shrouded longitudinal ribs in turbulent forced convection,” International Journal of Heat and Fluid Flow, Vol. 20, pp. 374-384, 1999.
19. Tahat, M., Kodah, Z. H., Jarrah, B. A., and Probert. S. D., “Heat Transfer from Pin-Fin Arrays Experiencing Forced Convection,” Applied Energy , Vol. 67, pp. 419-442, 2000.
20. Baughn, J., and Shimizu, S., “Heat Transfer Measurements from a Surface with Uniform Flux and an Impinging Jet,” ASME Journal of Heat Transfer, Vol. 111, pp. 1096-1098, 1989.
21. Downs, J., and James, E. H., “ Jet Impingement Heat Transfer— A Literature Survey,” ASME Paper, No. 87-HT-35, 1987.
22. Polat, S., Huang, B., Mujunmdar, A. S., and Douglas, W. J. M., “ Numerical Flow and Heat Transfer under Impinging Jets: A Review,” in Annual Review of Numerical Fluid Mechanics and Heat Transfer, Tien, C. L., and Chawla, T. C., Eds., Hemisphere, Washington, DC, Vol. 2, pp. 157-197, 1989.
23. Jambunathan, K., Lai, E., Moss, M. A., and Button, B. L., “ A Review of Heat Transfer Data for Single Circular Jet Impingement,” International Journal of Heat and Fluid Flow, Vol. 13, pp. 106-115, 1992.
24. Viskanta, R., “Heat Transfer to Impinging Isothermal Gas and Flame Jets,” Experimental Thermal and Fluid Science, Vol. 6, pp. 113-134, 1993.
25. Chapman, C. L., Lee, S., and Schmidt, B. L., “Thermal Performance of an Elliptical Pin Fin Heat Sink,” Proceeding of the Tenth IEEE Semi-Therm Symposium, pp. 24-31, 1994.
26. Masud, B., David, C., and Denpong, S., “A Comparison of Heat Sink Geometries for Laminar Forced Convection: Numerical Simulation of Periodically Developed Flow,” Proceeding of the Sixth InterSociety Conference on Thermal Phenomena in Electronic System, pp. 310-315, 1998.
27. Jonsson, H., and Palm, B., “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, pp. 47-54, 1991.
28. Jonsson, H., and Moshefgh, B., “Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks- Influence of Flow Bypass ,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 142-149, 2001.
29. Bilen, K., Akyol, U., and Yapici, S. “Heat Transfer and Friction Correlations and Thermal Performance Analysis for a Finned Sursace,” Energy Conversion and Management, Vol. 42, pp. 1071-1083, 2001.
30. Bejan, A., and Sciubba, E., “The Optimal Spacing of Parallel Plates Cooled by Forced Convection,” International Journal of Heat and Mass Transfer, Vol. 35, No. 12, pp. 3259-3264, 1992.
31. Mereu, S., Sciubba, E., and Bejan, A., “The Optimal Cooling of a Stack of Heat Generation Boards with Fixed Pressure Drop, Flowrate or Pumping Power,” International Journal of Heat and Mass Transfer, Vol. 36, No. 15, pp. 3677-3686, 1993.
32. Morega, A. M., Bejan, A., and Lee, S. W., “Free stream cooling of a stack of parallel plates,” International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 519-531, 1995.
33. Andrea, L. V., Stefano, G., and Franco, G., “Optimum Design of Vertical Rectangular Fin Arrays,” International Journal of Thermal Sciences, Vol. 38, pp. 525-529, 1999.
34. Ledezma, G., Morega, A.M. and Bejan,A., “Optimal Spacing between Pin Fins with Impinging Flow,” ASME Journal of Heat Transfer, Vol. 118, pp. 283-299, 1996.
35. Sathe, S., Kelkar, K. M., Karki, K. C., Tai, C., Lamb, C., and Patankar, S. V., “Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink,” ASME Journal of Electronic Packaging, Vol. 119, pp. 58-63, 1997.
36. Wirtz, R. A., and Zheng, N., “Methodology for Predicting Pin-Fin Fan-Sink Performance,” Proceeding of the Sixth InterSociety Conference on Thermal Phenomena in Electronic System, pp. 303-309, 1998.
37. Maveety, J. G., and Hendricks, J.F., “A Heat Sink Performance Study Considering Material, Geometry, Nozzle Placement, and Reynolds Number with Air Impingement,” ASME Journal of Electronic Package, Vol. 121, No. 3, pp. 156-161, 1999.
38. Knodo, Y., Matsushima, H., and Komatsu, T., “Optimization of Pin-Fin Heat Sinks for Impingement Cooling of Electronic Packages,” ASME Journal of Electronic Package, Vol. 122, pp. 240-246, 2000.
39. Jung, H. H., and Maveety, J.G., “Pin-Fin Heat Sink Modeling and Characterization,” Proceeding of the Sixteen IEEE Semi-Therm Symposium, pp. 260-265, 2000.
40. Meinders, E. R., Th. H. van der Meer, Hanjalic, K., and Lasance, C. J. M., “Application of Infrared Thermography to the Evaluation of Local Convective Heat Transfer on Arrays of Cubical Protrusions,” International Journal of Heat and Fluid Flow, Vol. 18, pp. 152-159, 1997.
41. Gennaro, C., Tommaso, A., and Giovanni, M. C. “Wall Heat Transfer in Static and Rotating Turn Channels by Quantitative Infrared Thermography,” International Journal of Thermal Sciences, Vol. 37, pp. 644-652, 1998.
42. Meinders, E. R. and Hanjalić, K. “Vortex Structure and Heat Transfer in Turbulent Flow over a Wall-Mounted Matrix of Cubes,” International Journal of Heat and Fluid Flow, Vol. 20, pp. 255-267, 1999.
43. Jensen, J. R., “Remote Sensing of the Environment,” Upper Saddle River, N. J. Prentice Hall, 2000.
44. ThermaCAM Researcher 2001 Operating Manual, FLIR Systems, 2000.
45. ThermaCAM SC500 Operator’s Manual, FLIR Systems, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top