(3.239.33.139) 您好!臺灣時間:2021/03/02 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梅聖鑫
研究生(外文):Sheng-Chin Mei
論文名稱:噴孔形狀及渦流促進器對衝擊熱傳之影響
論文名稱(外文):Effects of Jet Geometry and Vortex Generators on Impingement Heat Transfer
指導教授:顏維謀顏維謀引用關係
指導教授(外文):Wei-Mon Yan
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:日文
論文頁數:77
中文關鍵詞:衝擊熱傳噴孔長寬比渦流促進器暫態液晶技術
外文關鍵詞:Impingement heat transferJet aspect ratioVortex generatorTransient liquid crystal technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討噴孔形狀與渦流促進器對陣列式衝擊噴流系統之熱傳影響。研究中以暫態液晶影像法量測衝擊面上詳細的熱傳分布,為模擬電子零件冷卻及渦輪葉片通道冷卻,流場雷諾數之範圍則由Re=4500變化至1500。為探討噴孔形狀對衝擊熱傳之影響,研究中,我們以五種相同水力直徑,但不同噴孔長寬比(4、2、1、0.5及0.25)為研究對象。渦流促進器以連續與破裂肋條作分類。研究結果指出,紐賽數Nu隨雷諾數增加而增大。廢流出口為2及Re=3000時,橢圓形衝擊噴流熱傳,以噴孔長寬比AR=0.5時擁有最好的熱傳效益,此乃肇因於橢圓形衝擊噴流系統會減弱迴流與橫流之影響,使其具有最佳之中心衝擊區域熱傳分布。但圓孔衝擊噴流之熱傳效果,僅微低於AR=0.5的橢圓形衝擊噴流。關於渦流促進器對熱傳增益之研究方面,研究結果顯示,45V型的連續肋條排列可以獲得最佳的熱傳增益。至於連續肋條與破裂肋條對肋條熱傳增益比較發現,破裂肋條受肋條缺口影響,使分離之迴流由缺口流出而而使破裂肋條之熱傳分布較連續肋條低。

In this study, effects of jet geometry and vortex generators on impinging heat transfer are investigated. The detailed heat transfer distributions on the target plate were measured using transient liquid crystal technique thermometry. With application to electroic component cooling or cooling of gas turbine, measurements are done at three Reynolds numbers ranging from 4500 to 1500. To compare the effects of jet geometry, five aspect ratios of elliptic jets (AR=4,2,1,0.5 and 0.25) are used under the same hydraulic diameter. The different vortex geneators on target plane with broken and continuous ribs. The results show that the Nusselt number increases with an increase in the Reynolds number (Re). For orientation 2, the elliptic jet of AR=0.5 has best heat trasfer performance. This is due to the fact that elliptic jet of AR=0.5 can get more impinging central region which can reduce the effects of cross flow and return flow. The heat trasnfer of circle impingement jet (AR=1) is slightly lower than that of elliptic jet of AR=0.5. At six vortex generators, the target plate with 45V continuous ribs has a best heat transfer performance. Comparison of the heat transfer distributions for broken ribs and continuous ribs, the heat transfer for the case with broken ribs is relatively lower than that of continuous ribs.

目 錄
摘 要 I
ABSTRACT III
目 錄 IV
表 錄 VII
圖 錄 VIII
符號說明 XI
一、前言 1
二、文獻回顧 4
2.1 衝擊噴流系統之熱流場研究 4
2.2 液晶影像技術在衝擊熱傳之發展 9
2.3 橢圓形衝擊噴流之熱流場研究 12
2.4 具肋條平面之熱流場研究 14
三、理論模式 18
四、實驗設備與方法 20
4.1 實驗設備 20
4.1.1 測試風道 20
4.1.2 熱風產生器 21
4.1.3 測試件 22
4.1.4 溫度量測系統 22
4.1.5 影像擷取系統 23
4.1.6 流場速度量測 23
4.1.7 熱化液晶 24
4.2 進行步驟 25
4.2.1 液晶校正 25
4.2.2 實驗步驟 26
4.2.3 實驗數據處理 28
五、結果與討論 34
5.1 橢圓形陣列式衝擊噴流對平滑衝擊平面熱傳之影響 34
5.1.1 不同廢流出口方向對衝擊熱傳分布之影響 35
5.1.2 雷諾數Re對衝擊熱傳分布之影響 39
5.1.3 噴孔長寬比與衝擊距離對衝擊熱傳分布之影響 41
5.1.4 文獻對衝擊熱傳分布之探討 43
5.2 陣列式衝擊噴流對具渦流促進器平面熱傳之影響 45
5.2.1 廢流方向對具渦流促進器平面熱傳分布之影響 46
5.2.2 雷諾數對具渦流促進器平面熱傳分布之影響 49
5.2.3 渦流促進器型態對衝擊熱傳分布之影響 50
六、結論 75
參考文獻 78

參考文獻
Arjocu, S.C. and Liburdy, J.A., 1999, “Near Surface Characterization of an Impinging Elliptic Jet Array,” ASME J. Fluid Engineering, Vol.121, pp.121~390.
Azad, G.S., Huang, Y. and Han, J.C., 2000, “Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique,” AIAA J. Thermophysics and Heat Transfer, Vol.14, No.2, pp.186-193.
Baughn, J.W., 1998, ” Liquid Crystal Methods for studying turbulent heat transfer,” Int. J. Heat and Fluid Flow, Vol.16, No.5, pp.365-375.
Behbahani, A.L. and Goldstein, R.J., 1983, “Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets,” ASME J. Engineering for Power, Vol.105, pp.354-360.
Carslaw, H.S. and Jaeger, J.C., 1959, “Conduction of Heat in Solids”, Oxfore University Press, U.K..
Ekkad, S. V. and Han, J.C., 1997, “Detailed Heat Transfer Distributions in Two-Pass Square Channels with Rib Turbulators,” Int. J. Heat Mass Transfer, Vol. 40, No. 11, pp. 2525-2537.
Ekkad, S. V., Huang, Y. and Han, J.C., “Impingement Heat Transfer on a Target Plate with Film Cooling Holes,” AIAA, J. Thermophysics and Heat Transfer, Vol.13, No. 4, pp.522-528, 1999.
Florschuetz, L.W., Berry, R.A. and Metzger, D.E., 1980, “Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air,” ASME J. Heat Transfer, Vol.102, pp.132-137.
Florschuetz, L.W., Turman, C.R. and Metzger, D.E., 1981, “Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement with Crossflow,” ASME J. Heat Transfer, Vol.103, pp.337-342.
Florschuetz, L.W., Metzger, D.E. and Su, C.C., 1984, “Heat Transfer Characteristics for Jet Array Impingement with Initial Crossflow,” ASME J. Heat Transfer, Vol. 106, pp.34-40.
Gau, C. and Lee, C.C., 1992, “Impingement Cooling Flow Structure and Heat Transfer along Rib-Roughened Walls,” Int. J. Heat Mass Transfer, Vol.35, pp.3000-3020.
Han, J.C., Chandra, P.R. and Lau, S.C., 1988, “Local Heat/Mass Transfer Distributions around Sharp 180 Deg Turns in Two-Pass Smooth and Rib-Roughened Channels”, ASME J. Heat Transfer, Vol. 110, pp.91-98.
Han, J.C. and Zhang, Y.M., 1992, “High Performance Heat Transfer Ducts with Paralled Broken and V-shaped Broken Ribs,” Int. J. Heat Mass Transfer, Vol.35, No.2, pp.513-523.
Ho, C.M. and Gutmark E., 1987, “Vortex Induction and Mass Entrainment in a Small-Aspect-Ratio Elliptic Jet,” J. Fluid Mech, Vol.179, pp. 383-405.
Hollworth, B.R. and Berry, R.D., 1978, “Heat Transfer from Arrays of Impinging Jets with Large Jet-to-Jet Spacing,” ASME J. Heat Transfer, Vol.100, pp. 352-357.
Hollworth, B.R., Lehmann, G. and Rosiczkowski, J., 1983, “Arrays of Impinging Jets with Spent Fluid Removal through Vent Holes on the Target Surface, Part 2: Local Heat Transfer,” ASME J. Engineering for Power, Vol.105, pp.393-402.
Huang, Y., Ekkad, S.V. and Han, J.C., “Detailed Heat Transfer Distributions under an Array of Orthogonal Impinging Jets11,“ AIAA, J. Thermophysicas and Heat Transferx, Vol.12, No.1, pp.73-79, 1998
Lau, S.C., McMillin, R.D. and Han, J.C., 1991, “Heat Transfer Characteristics of Turbulent Flow in a Square Channel with Angled Discrete Ribs,” ASME J. Turbomachinery, Vol.113, pp.367-374.
Lee, S.J., Lee, J.H. and Lee, D.H., 1994, “Local Heat Transfer Measurements from an Elliptic Jet Impinging on a Flat Plate Using Liquid Crystal,” Int. J. Heat Mass Transfer, Vol.37, No.6, pp.967-976.
Lee, J. and Lee, S.J., 2000, “The Effect of Nozzle Aspect Ratio on Stagnation Region Heat Transfer Characteristics of Elliptic Impinging Jet,” Int. J. Heat Mass Transfer, Vol.43, pp.555-575.
Liou T.M. and Chen S.H., 1998, “Turbulent Heat and Fluid Flow in a Passage Disturbed by Detached Perforate Ribs of Different Heights,” Int. J. Heat Mass Transfer, Vol 41, No.12, pp.1795-1706.
Liou, T.M., Chen, C.C. and Tsai, T., 2000, “Heat Transfer and Fluid Flow in A Square Duct with 12 Different Shaped Vortex Generators,” ASME J. Heat Transfer, Vol. 122, pp.327-335.
Obot, N.T. and Trabold, T.A., 1987, “Impingement Heat Transfer Within Arrays of Circular Jets: Part 1-Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings,” ASME J. Heat Transfer, Vol.109, pp.872-879.
Treuren, K.W.V., Wang, Z., Ireland, P.T. and Jones, T.V., 1994, “Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature beneath an Array of Impinging Jets,” ASME J. Turbomachinery, Vol.116, pp.369-374.
許華德,1999,「散熱片在有衝擊噴流之散熱效益探討」,國立成功大學航空太空工程研究所碩士論文,民國八十八年六月二十日。
李乘清,1991,「粗糙面之衝擊冷卻」,國立成功大學航空太空工程研究所碩士論文,民國八十年六月。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔