|
1. Anderson, J. A., Silverstein, J. W., Ritz, S. A. and R. S. Jones. (1977), Distinctive Features, Categorical Perception, and Probability Learning: Some Applications of a Neural Model, Psychological Review, 84, 134 -451. 2. Armijo, L. (1996), Minimization of Functions Having Lipschitz Continuous First Partial Derivatives, Pacific Journal of Mathematics, 16,1-3. 3. Ben-Tal, A., Melmen A., and Zowe, J. (1990), Curved Search Methods for Unconstrained Optimization, Optimization, 5, 21, 669-695 4. Bribil, S.I., Fang, S.C. (2000), Electromagnetism for Global Optimization, submitted to Journal of Global Optimization. 5. Broomhead, D. S. and Lowe, D. (1988), Multi-variable Functional Interpolation and Adaptive Networks, Complex Systems, 2, 321-355. 6. Calvin, W. H. (1994), The Emergence of Intelligence, Scientific American, special issue on Life in the Universe, 79-85. 7. Dekkers, A. and Aarts, E. (1991), Global Optimization and Simulated Annealing. Mathematical Programming, 50,367-393. 8. Dorigo, V. M. M. and Colorni, A. (1996), The Ant System: Optimization by a Colony of Cooperating Agents, IEEE Transactions on System, Man and Cybernetics, 26,1-13. 9. Glover, J.K.F., Laguna, M. (1995), Genetic Algorithms and Tabu Search: Hybrids for Optimization, Computers and Operation Research, 22, 111-134. 10. Goldberg, D. (1989), Genetic Algorithms in search, New York:Wesley. 11. Holland J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI. 12. Holland J. H. (1992), Genetic Algorithms, Scientific America, 267, 66-72. 13. Hopfield, J. J.(1982), Neural Networks and Physical Systems With Emergent Collective Computational Abilities, National Academic Science of the USA, 79, 2554-2578. 14. Huyer, W.and Neumaier, A. (1999), Global Optimization by Multilevel Coordinate Search, Journal of Global Optimization, 14,331-355. 15. Ingber, L. and Rosen, B. E. (1992), Genetic algorithms and very fast simulated annealing, Mathematical and Computer Modeling, 16 ,87-100. 16. Jang, G. S. (1993), Intelligent Stock Trading System with Price Trend Prediction and Reversal Recognition Using Dual-Module Neural Networks, Journal of Applied Intelligence, 3, 225-248. 17. Jang, J. S., Sun, C. T. and Mizutani, E. (1997), Neuro-Fuzzy AND Soft Computing, New York:Practice Hall. 18. Lecun, Y. (1985), A Learning Scheme for Asymmetric Threshold Networks, Proceedings of Cognitive, 85, 599-604. 19. Michalewicz , Z. (1994),Genetic Algorithms + Data Structures = Evolution Programs, Springer Verlag, Berlin. 20. More, B.J. and Wu, Z. (1995), Global Smoothing and Continuation for Large-scale Molecular Optimization, Argonne National Laboratory, Illinois: Preprint MCS-P539-1095. 21. Muselli, M., and Ridella, S. (1990), Supervised Learning Using a Genetic Algorithm, Proceedings of INNC90, Paris, France. 22. Nuttle, H. L. W., King, R. E., and Hunter, N. A. (1991), A Stochastic Model of the Apparel- Retailing Process for Seasonal Apparel, Journal of Text. Inst., 82, 2, 247-259. 23. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983), Optimization by Simulated Annealing, Science, 220, 671-680. 24. Kohonen, T. (1982), Self-Organized Formation of Topological Feature Maps, Biological Cybernetics, 43, 59-69. 25. Kramer, A. H. and Sangiovanni-Vincentelli (1989), A., Efficient Parallel Learning Algorithm for Neural Networks, Advances in Neural Information Processing Systems, 1, San Mateo, CA, 40-48. 26. Lefteri, H. T. and Robert, E. U. (1997), Fuzzy and Neural Approaches in Engineering, Canada. 27. Parker, D. B. (1985), Learning-Logic: Casting the Cortex of the Human Brain in Silicon, Technical Report TR-47, Center for Computational Research on Economics and Management Science, MIT. 28. Romeo, F. I. (1989), Simulated annealing: theory and applications to layout problems, PhD thesis, EECS Department, University of California at Berkeley, May. 29. Rooif, A., Jain, L. and Johnson, R. (1998), Neural Network Training Using Genetic Algorithms, Singapore. 30. Rumelhart, D. E., Hinton, G. R., and Williams, R. J. (1986), Learning Internal Representations by Error Propagation, Parallel Distributed Processing, 1, D. E.. 31. Schaffer, J.D. (1989), A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization, Proceedings of the 3rd International Conference on Genetic Algorithms, 51-60. 32. Törn, M.M.A, Viitanen,S.(1999), Stochastic Global Optimization: Problem Classes and Solution Techniques, Journal of Global Optimization,14,437-447. 33. Wodrich, M. and Bilchev, G. (1997), Cooperative Distributed Search: The Ant's Way, Journal of Control and Cybernetics, 26:3. 34. Wu, P. (1997), Neural Networks and Fuzzy Control with Application Manufacturing and Management, Ph.D dissertation, North Carolina State University, Raleigh, USA. 35. Wu, P., Fang, S. C., H. L. W., and King, R. E., (1995), Decision Surface Modeling of Apparel Retail Operations using Neural Network Technology, International Journal of Operations and Quantitative Management ,1,1, 33-47. 36. Zurada, J. M. (1995), Introduction to Artificial Neural Systems, Boston.
|