跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃君琦
研究生(外文):Chun-Chi Huang
論文名稱:低溫共燒陶瓷基板用表面厚膜式電容材料之研究
論文名稱(外文):Study on the thick film dielectric materials on the low temperature co-fired ceramic substrate
指導教授:許志雄許志雄引用關係向性一
指導教授(外文):Chi-Shiung HsiHsing-I Hsiang
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:鈦酸鋇液相燒結低溫共燒陶瓷基板
外文關鍵詞:BaTiO3Liquid phase sinteringLTCC
相關次數:
  • 被引用被引用:3
  • 點閱點閱:631
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主要目的在於開發LTCC基板用表面厚膜式電容之介電材料,研究中選用的電容材料為添加燒結促進劑之BaTiO3,所添加的燒結促進劑為四種硼矽酸玻璃,再經由介電性質、燒結條件等確立陶瓷材料之最佳配方,並製成介電膠,網印於LTCC基板上,製作出LTCC基板用之表面厚膜式電容。
BBS、PBS、ZBS1、ZBS2四種硼矽酸玻璃玻璃,皆與鈦酸鋇有極佳之潤濕性,有利於燒結緻密化的進行。添加BBS玻璃之樣品其緻密度較差,相對密度皆在85%以下,而添加12 wt% PBS、5 wt% ZBS1於900℃或12 wt% ZBS1、5 wt% ZBS2於850℃皆可得到90%以上之相對密度。
BBS玻璃添加量為5 wt% 800℃,即有二次相生成,PBS玻璃於5wt% 850℃,ZBS1為5wt% 900℃,ZBS2則在添加量為12wt% 800℃才有二次相的生成。而鈦酸鋇與BBS之間的鹼度差為1.031,與PBS、ZBS1、ZBS2玻璃間之鹼度差分別為0.859、0.15、0.072,表示鹼度差越小,陶瓷與玻璃間越不易反應生成二次相。
介電常數會隨相對密度的增加而上升,而隨二次相量的增多而下降。四種玻璃添加劑中,以添加ZBS2所得之介電性質最為優良,配合燒結條件與添加量,可得到較高的相對密度,低的二次相生成,因而可獲得900以上之介電常數。
利用添加12 wt% ZBS2之鈦酸鋇介電膠製作LTCC基板用表面式厚膜電容器,結果發現鈦酸鋇與基板之間無二次相的生成,而所得之鈦酸鋇介電層之相對密度較塊材為小,乃因燒結時間較短,及後燒過程中下電極與基板之束縛所致。在基板、介電層、電極層間並無反應層的形成,而有少量銀離子擴散至介電層中,故在設計表面後燒式電容器時,需儘可能降低燒結溫度與時間,並考慮介電層之厚度,及使用之電極材料,以減少銀擴散對其可靠度之影響。

Abstract
In order to develop the thick film dielectric materials on the low temperature co-fired ceramic substrate, the effects of BaO-B2O3-SiO2 (BBS), PbO-B2O3-SiO2 (PBS), ZnO-B2O3-SiO2-1 (ZBS1)and ZnO-B2O3-SiO2-2 (ZBS2) addition on the sintering behavior and the dielectric properties of BaTiO3 (BT) were investigated. And finding the best composition and sintering condition of the BT to make dielectric paste fabricates the thick film surface capacitor on the low temperature co-fired ceramic substrate.
Four glasses, BBS、PBS、ZBS1 and ZBS2, all have good wetting to BT. The addition of BBS glass in the BT ceramic obtained the worst relative density(<85%). However, 12 wt% PBS and 5 wt% ZBS1 in 900℃ and 12 wt% ZBS1 and 5 wt% ZBS2 in 850℃ produced a high relative density (>95%).
5 wt% BBS -800℃, 5 wt% PBS -850℃, 5 wt% ZBS1 -900℃ and 12 wt% ZBS2 -800℃ produce secondary phase. And the difference of basicity between BT and BBS, PBS, ZBS1 and ZBS2 are 1.031, 0.859, 0.15 and 0.072. It seems that the larger difference of basicity it is, the easier it is to produce the secondary phase.
The dielectric constant is enhanced by the increasing relative density, and decreased by the increasing secondary phase. In these four glasses, ZBS2 can get the best dielectric properties. The proper addition of ZBS2 glass in the BT ceramic enhanced the relative density and dielectric constant. The BT sample with 12 wt% ZBS2 sintered at 900℃ produced a relative density 95% and a dielectric constant 941 at room temperature.
The thick film surface capacitor with 12 wt% ZBS2 dielectric paste on the low temperature co-fired ceramic substrate, there is no secondary phase between BT and substrate in the interface. However, the relative density of the dielectric layer is less than the relative density of the bulk sample because of the shorter sintering time and the constraining from electrode and substrate in post-sintering process. There is no reaction between electrode and dielectric layer, but some silver ion diffuse into dielectric layer. It needs to lower sintering temperature and time to reduce the effect of reliability caused by the silver ion diffusion. And the thickness of the dielectric layer and the material of the electrode are important , too.

目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
誌 謝 Ⅲ
目 錄 Ⅳ
圖 目 錄 Ⅵ
表 目 錄 Ⅸ
第一章 緒論 01
1-1前言 01
1-2研究目標 02
第二章 理論基礎-前人研究 03
2-1鈦酸鋇的性質 03
2-2介電性質 06
2-3影響鈦酸鋇介電性質的因素 07
2-4液相燒結理論 09
2-5鈦酸鋇添加低溫燒結促進劑 15
2-6低溫共燒陶瓷材料(LTCC) 17
第三章 實驗方法 19
3-1介電材料的分析 19
3-2樣品印製及燒成 23
3-3成品性質測試及分析 23
第四章 結果與討論 24
4-1玻璃對鈦酸鋇燒結行為及介電性質之影響 24
4-1.1玻璃性質 24
4-1.2鈦酸鋇添加玻璃於不同燒結條件下與緻密化之關係 29
4-1.3 鈦酸鋇添加玻璃之相分析及鑑定 44
4-1.4 鈦酸鋇添加玻璃之電氣性質分析 51
4-2鈦酸鋇添加玻璃(ZBS2)- 表面式後燒電容 61
4-2.1 基板特性 61
4-2.2 電氣特性 65
4-2.3 微結構及相分析 66
第五章 結論 70
參考文獻 71
附錄 一 BaTiO3原始粉末之基本性質 A-1
附錄 二 鈦酸鋇添加不同比例BBS玻璃於各燒結溫度下之X光繞射結果 A-2
附錄 三 鈦酸鋇添加不同比例PBS玻璃於各燒結溫度下之X光繞射結果 A-3
附錄 四 鈦酸鋇添加不同比例ZBS1玻璃於各燒結溫度下之X光繞射結果 A-4
附錄 五 鈦酸鋇添加不同比例ZBS2玻璃於各燒結溫度下之X光繞射結果 A-5
附錄 六 鈦酸鋇添加不同比例BBS玻璃於各燒結溫度下之品質因子 A-6附錄 七 鈦酸鋇添加不同比例PBS玻璃於各燒結溫度下之品質因子 A-6
附錄 八 鈦酸鋇添加不同比例ZBS1玻璃於各燒結溫度下之品質因子 A-7
附錄 九 鈦酸鋇添加不同比例ZBS2玻璃於各燒結溫度下之品質因子 A-7
附錄 十 各BaTiO3與玻璃試片之處理條件及編號 A-8

參考文獻
1. 黃冠達, 低溫共燒陶瓷基板間之反應及其特性分析, 義守大學電機所, 碩士論文, 1996.
2. A. J. Moulson and J. M. Herbert, Electroceramics, Chapman & Hall, 1990
3. 飽忠興, “多層陶瓷電容器”, 精密陶瓷元件製作及應用, 工業技術研究院工業材料研究所編印, pp11-1~11-3, 1989.
4. 吳朗, 電子陶瓷-介電, 全欣科技圖書, pp157-160.
5. 蔡大翔, 方滄澤, “乾燥、脫脂過程及燒結理論”, 陶瓷技術手冊(上), 中華民國產業科技發展協會p89-109, 1994.
6. E. Kostic et al., “Liquid-Phase Sintering of Alumina,” Powder Metall. Int 19, 1987
7. Bruce D. Begg, Eric R. Vance, and Janusz Nowotny, “Effect of Particle Size on the Room-Temperature Crystal Structure of Barium Titanate,” J. Am. Ceram. Soc., 77 [12], pp3186-92, 1994.
8. Kenji Uchimo , Eiji Sadanaga, and Terukiyo Hirose, “Dependence of the Crystal Structure on Particle Size in Barium Titanate,” J. Am. Cerm. Soc., 72 [8], pp1555-58, 1989.
9. Xiaoping Li, and Wei-Heng Shih, “Size Effect in Barium Titanate Particles and Clusters,” J. Am. Cerm. Soc., 80 [11], pp2844-52, 1997.
10. Hiroyuki Ikawa, “Size Dependent Behavior for Pervskite Ferroelectrics,” Ceram. Trans., 32, pp19-28, 1993.
11. R. P. S. M. Lobo, Nelcy D. S. Mohallem, and Roberto L. Moreira, “Grain-size Effect on Diffuse Phase Transitions of Sol-Gel Prepared Barium Titanate Ceramics,” J. Am. Ceram. Soc. , 78 [5], pp1343-46, 1995.
12. H.Kniepkamp and W. Heywang, Z. Angew. Physik, 6, pp385-390, 1954.
13. 黃忠良, 工業陶瓷製程, 復漢出版社, pp110
14. Jiamxin Liu and Randall M. German, “Microsturcture Effect on Dihedral Angle in Liquid-Phase Sintering,” Metallurgical and Materials Transactions A, v32A, Jan., p165-69, 2001.
15. H. J. Hagemann, D. Hennings, and R. Wernicke, “Ceramic Multilayer Capacitors,” Philps Tech. Rev., 41 [3], pp89-98, 1983.
16. Jau-Ho Jean and Shih-Chun Lin, “Low-firing processing of ZrO2-SnO2-TiO2 ceramic,” J. Am. Ceram. Soc. 83 [6], pp1417-22, 2000.
17. K. Ramesh Chowdary and E.C. Subbarao, “Liquid Phase Sintered BaTiO3,” Ferroeclectrics,.37, pp689-692, 1981.
18. 李銘煒, 埋入及表面式電阻與LTCC基板反應研究, 高雄工學院材研所, 碩士論文, 1997.
19. 盧俊男, 低溫燒結多層玻璃陶瓷基板之研究, 高雄工學院電機所, 碩士論文, 1995.
20. Y. Shimada, K. Utsumi, M. Suzuki, H. Takamizawa, M. Nitta, and T. Watari, “Low Firing Temperature Multilayer Glass-Ceramic Substrate,” IEEE Trans. on Comp., Hybrids, and Manuf. Tech., 6 [4], pp382—388, December 1983.
21. W.H. Zachariasen, “The atomic arrangement in glass” J. Am. Ceram. Soc. 54, pp3841, 1932.
22. 陳皇鈞, 陶瓷材料概論上冊, 曉園出版公司,臺北, pp67-83, 1991.
23. 吳振名,“玻璃陶瓷,”陶瓷技術手冊(下),經濟部技術處發行, pp963-986, 1994.
24. 林峰輝, 鈉鈣磷生醫骨科玻璃陶瓷之研究, 博士論文, 國立成功大學礦冶及材料科學研究所, 1987.
25. Kenji Morinaga, Hiromichi Takebe, and Yoshirou Kuromitsu, “Interactions Between Al2O3 Substrate and Glass Melts,” Ceram. Microstructure: control at the atomic level, A. P. Tomsia and A. Glaeser, 1998.
26. Sea-Fue Wang, Thomas C.K. Yang, Yuh-Ruey Wang, Yoshirou Kuromitsu, “Effect of glass composition on the densification and dielectric properties of BaTiO3 ceramics,” Ceramics international 27, pp157-162, 2001.
27. Takahiro Takada, Sea Fue Wang, Shoko Yoshikawa, Sei-Joo Jang, and Robert E. Newnham, “Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics,” J. Am. Ceram. Soc., 77 [7] pp1909-16, 1994.
28. Jau-Ho Jean, Ruey-Ling Chang and Chia-Rucy Chang, “Crystallization and Properties of Low k Glass Composite,”Jpn. J. Appl. Phys., 34 [2A], pp572-577 ,1995
29. S. Vasudevan and A. Shaikh, “Microwave Characterization of Temperature Cofired Ceramic System,” International Symposium on Advanced Packaging Materials, pp152-157, 1997.
30. P. Pruna,R.D. Gardner,D.L. Hankey,S.P. Yurvey, ”Microwave Characterization of Low Temperature Cofired Ceramic,” International Symposium on Advanced Packaging Materials, pp134-137, 1998.
31. Chuck Nelson,Richard Sigliano,Chihiro Makihara, “Built-in Passive Components in Multilayer Ceramics for Wireless Applications,” International Symposium on Advanced Packaging Materials, 1997.
32. W.A. Kaysser and G. Petzow, “Present State of Liquid Phase Sintering,” Powder Metallurgy , 28[3], 1985.
33. 饒瑞珠, “LTCC用內埋式電容塗料的發展趨勢”, 工業材料162期, pp163-169, Jun, 2000.
34. I. Burn, “Flux-sintered with Lithium Fluoride,” J, Mater. Sci., 17 [5] , pp1398-408, 1982.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top