|
1. Le Châtelier, F., Rev. de Métall., vol. 6, p. 914, 1909. 2. Portevin, A. and Le Châtelier, F., Compt. Rend. Acad. Sci. Paris, vol. 176, p. 507, 1923. 3. Portevin, A. and Le Châtelier, F., Trans ASST vol. 5, p. 457, 1924. 4. Potez, L., Lapasset, G. and Kubin, L. P., “Jerky Flow (The PLC Effect) in L12Al3Ti-Based Alloys,” Scripta Metallurgica et Materialia, vol. 26, pp.841-846, 1992. 5. Engelke, C. and Neuhäuser, H., “Static and Dynamic Strain Ageing in D03-Ordered Fe3Al,” Scripta Metallurgica et Materialia, vol. 33, pp.1109-1115, 1995. 6. Gonzalez-Doncel, G., Adeva, P., Cristina, M. C. and Ibanez, J., “Luders Bands Formation in a Rapidly Solidified Ni3Al Alloy Ribbon,” Acta Metall. Mater., vol. 43, pp. 4281-4287, 1995. 7. Popille, F., Kubin, L. P., Douin, J. and Naka, S., “Portevin-Le Chatelier Instabilities and Stoichiometric Effects in B2 Titanium Aluminides,” Scripta Materialia, vol. 34, pp. 977-984, 1996. 8. Takasugi T, Honjo H, Kaneno Y, Inoue H., “Plastic Flow Instabilities of L12 Co3Ti Alloys at Intermediate Temperature,” Acta Mater., vol. 50, pp. 847-855, 2002. 9. Pink, E. and Grinberg, “Serrated Flow in a Ferritic Stainless Steel,” Materials Science and Engineering, vol. 51, pp. 1-8, 1981. 10. Cottrell, A. H., “A note on the Portevin-Le Chatelier Effect,” Philosophical Magazine, vol. 44, pp. 829-832, 1953. 11. Sharpe, W. N. Jr., “The Portevin-Le Chatelier Effect in Aluminium Single Crystals and Polycrystals,” J. Mech. Phys. Solids, vol. 14, pp. 187-202, 1966. 12. Fellner, M., Hamersky, A. and Pink, E., “A Comparison of the Portevin-Le Chatelier Effect in Constant-strain-rate and Constant-stress-rate Tests,” Materials Science and Engineering, vol. A136, pp. 157-161, 1991. 13. Gentzbittel, J. M. and Fougeres, R., “The Phenomenon of Stress Instabilities in Cyclic Deformation of Al-Li Alloys,” Scripta Metallurgica, vol. 21, p. 1411, 1987. 14. Hong, S. I. and Laird, C., “Cyclic Deformation Behavior of Cu-16at.%Al Single Crystals I: Strain Burst Behavior,” Materials Science and Engineering, vol. A124, pp. 183-201, 1990. 15. Berces, G., Chinh, N. Q., Juhasz, A. and Lendvai, J., “Kinematic Analysis of Plastic Instabilities Occurring in Microhardness Tests,” Acta Mater., vol. 46, pp. 2029-2037, 1998. 16. Obst, B. and Nyilas, A., “Experimental Evidence on the Dislocation Mechanism of Serrated Yielding in F.C.C. Metals and Alloys at Low Temperatures,” Materials Science and Engineering, vol. A137, pp. 141-150, 1991. 17. Kuo, Chen-Ming and Lin, Chih-Hao, “Plastic Instability of Aluminum-Magnesium Alloy 5005 During Stress Rate Change Test,” the 25th Conference on Theoretical and Appleid Mechanics, Taichung, Taiwan, R. O. C., December 2001. 18. ASTM E 8M-94a, “Standard Test Methods for Tension Testing of Metallic materials,” Annual Book of ASTM Standards, vol. 03.01, pp. 81-96, 1994. 19. Metal Handbook, American Society for Metals, Metals Park, OH, vol. 8, 1964. 20. TestStart II Operator Manual, MTS, pp. 273-281, 1990. 21. Hume-Rothery, W. and G. V. Raynor, in, “The Structure of Metals and Alloys,” Institute of Metais, p. 97, London, 1956. 22. Van Vlack, Lawrence H., Elements of Materials Science and Engineering, 6th ed. Addison-Wesley Publishing Co., Reading, MA, 1996. 23. Reed-Hill, Robert E. and Abbaschian, Reza, Physical Metallurgy Principles, 3rd ed., PWS Publishing Co., Boston, 1994. 24. Dieter, George E., Mechanical Metallurgy, SI Metric ed., McGraw-Hill Book Co., 1988. 25. Meyers, Marc André and Chawla, Krishan Kumar, Mechanical Metallurgy Principles and Applications, Prentice-Hall, Inc., 1984. 26. Lin, Chih-Hao, “Mechanisms of Metallic Time-Dependent Flow at Low Homologous Temperature,” Master Thesis, I-Shou University, May 28, 1998. 27. ASTM E 112-88, “Standard Test Methods for Determining Average Grain Size,” Annual Book of ASTM Standards, American Society for Testing and Materials, vol. 03.01, pp. 227-252, 1994. 28. Courtney, Thomas H., Mechanical Behavior of Material, 2nd ed., McGraw-Hill Book Co., pp. 130-131, 2000. 29. Frost, H.J. and Ashby, M.F., Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982. 30. Dunham, D. P. and Gibling, J. C., “Thermally and Mechanically Activated Dislocation Gilde: Experimental Resrlts and Theoretical Analysis,” Acta Metall. Mater., vol. 41, pp. 1173-1182, 1993. 31. Becker, R., “Über die Plastizität amorpher und kristalliner fester Körper,” Phys. Zeitschr., vol. 26, pp. 919-925, 1925. 32. Orowan, E., “Zur Kristallplastizität. I. Tieftemperaturplastizität und Beckersche Formel,” Z. Physik, vol. 89, pp. 605-613, 1934. 33. Kocks, U. F., Argon, A. S. and Ashby, M. F., “Thermodynamics and Kinetics of Slip,” Progress in Materials Science, vol. 19, pp. 1-288, 1975. 34. Kocks, U. F., “Constitutive Relations for Slip,” Chapter 3 of Constitutive Equations in Plasticity, edited by Ali S. Argon, MIT Press, pp. 81-115, 1975. 35. Nix, W. D. and Gibling, J. C., “Mechanisms of Time-Dependent Flow and Fracture of Metals,” Proc. Flow and Fracture at Elevated Temperatures, ASM, 1985. 36. Kuo, C.-M., Forbes, K. R., Baker, S. P. and Nix, W. D., “On the Question of Strain Rate Continuity in Stress Rate change Experiments,” Scripta Metallurgica et Materialia, vol.24, pp. 1623-1628, 1990. 37. Uchic, M. D. and Nix, W. D., “Sigmoidal Creep of Ni3(Al, Ta),” Intermetallics, vol. 9, pp. 1053-1061, 2001.
|