跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許蕙如
研究生(外文):Hui-Ju Hsu
論文名稱:Fe2O3含量對Li2O-Fe2O3-MnO2-CaO-P2O5-SiO2系列玻璃陶瓷結構及特性之影響
論文名稱(外文):The influences of Fe2O3 Content on Microstructures and Properties of Li2O-Fe2O3-MnO2-CaO-P2O5-SiO2 Glass Ceramics
指導教授:許志雄許志雄引用關係
指導教授(外文):Chi-Shiung Hsi
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:139
中文關鍵詞:玻璃陶瓷超順磁
外文關鍵詞:glass ceramicsuperparamagnetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:719
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
.. 本研究在Li2O-Fe2O3-MnO2-CaO-P2O5-SiO2(LFMCPS)系玻璃中添加不同量的Fe2O3,探討Fe2O3之添加量對其結晶相種類、顯微結構及磁特性的影響。由X-光繞射分析結果顯示,經850℃結晶化熱處理後之LFMCPS玻璃陶瓷樣品中含有藍磷酸鋰鐵礦(triphylite, Li(Mn,Fe)PO4)、矽灰石(β-wollastonite ,β-CaSiO3)、磁鐵礦(magnetite , FeFe2O4)、Li2Ca4Si4O13、MnFe2O4以及矽酸鋰(Li2SiO3)等結晶相。顯微結構觀察得知,矽灰石及矽酸鋰為基地相,富鐵錳相外觀呈現橢圓形,且晶粒大小隨著Fe2O3含量的變化而變化,另外還有富錳相的小晶粒聚集區域。此外,由DTA之分析結果得知,此系列玻璃有三個放熱峰產生,與X-光繞射分析結果比對後可知,此三放熱峰由低溫至高溫依序為Li2Ca4Si4O13、CaSiO3及Li2SiO3晶相形成時所產生。而由SQUID及EPR的結果可知,LFMCPS玻璃陶瓷的Fe2O3添加量為4 wt%時,其850℃熱處理樣品呈現順磁性;Fe2O3添加量為8wt%時呈現超順磁與鐵磁混合磁性;而當Fe2O3含量為16 wt%時,呈現鐵磁性。
本研究亦在LFMCPS玻璃組成中加入TiO2以形成Li2O-Fe2O3-MnO2-CaO-P2O5-SiO2-TiO2(LFMCPST)系列玻璃,此系列玻璃亦添加不同量之Fe2O3,並探討TiO2之添加對其結晶相種類、顯微結構及磁特性的影響。由X-光繞射分析的結果顯示,經由850℃熱處理後之LFMCPST樣品內具有的結晶相比LFMCPS系玻璃陶瓷多了CaTiO3結晶相。且由DTA結果可知,LFMCPST亦有三個放熱峰,由低溫至高溫依序為Li2Ca4Si4O13、CaSiO3與CaTiO3、Li2SiO3晶相形成時所產生。此外TiO2的添加使LFMCPST系玻璃的結晶化溫度較LFMCPS系玻璃低。而LFMCPST系玻璃陶瓷中Fe2O3的含量與系統所呈現的磁性關係與LFMCPS系玻璃陶瓷相同。

The influences of Fe2O3 contents in the microstructures and magnetic properties of Li2O-Fe2O3-MnO2-CaO-P2O5-SiO2(LFMCPS)and glass ceramics were investigated. Titanium oxide (TiO2) was applied to the LFMCPS glass ceramics, which was recognized as LFMCPST sample in this research, to study the alteration of the microstructure of the glass ceramics and their magnetic properties due to adding of nucleation agent.
Phases formed in the LFMCPS glass-ceramic were observed including magnetite (FeFe2O4)、β-wollastonite(β-CaSiO3)、lithium silicate(Li2SiO3)、Li2Ca4Si4O13、MnFe2O4 and triphylite(Li(Mn,Fe)PO4). The microstructure studied by X-ray and SEM of the LFMCPS glass-ceramic system indicated that the matrix of this glass-ceramic was mainly composed by β-wollastonite and lithium silicate. Most of the Fe/Mn-rich grains were confirmed to be elliptic and the grain size changed as the Fe2O3 content changed found to be. In the mean time, SEM results showed that the precipitate founded in the lithium silicate matrix were Mn rich in content. Three exothermic peaks observed in the DTA measurement were characterized by X-ray to be Li2Ca4Si4O13、β-CaSiO3 and Li2SiO3. The three exothermic peaks shifted to the higher temperature as the content of Fe2O3 increased indicated that the crystallization formed at higher temperature at higher Fe2O3 content. LFMCPS glass-ceramic was paramagnetism when Fe2O3 content was 4 wt%;however, as the content of Fe2O3 increased to 8 wt%;the specimen exhibited superparamagnetic and ferromagnetic mixed behaviors. As the Fe2O3 content further rose to 16 wt%, it showed the ferromagnetic behavior only.
In comparison with the LFMCPS glass-ceramic, the LFMCPST glass-ceramic consisted of CaTiO3 phase in extra. Other than that, the magnetic behavior of both systems showed not much in difference.

中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅴ
目錄 Ⅵ
圖目錄 Ⅸ
表目錄 XⅣ
附錄目錄 XⅤ
第一章 緒論 1
1—1 前言 1
1—2 研究動機及目的 2
第二章 理論基礎 3
2-1 玻璃之結構與特性 3
2-2 玻璃陶瓷之製造原理 5
2-2-1 玻璃中的相分離 6
2-2-2 成核劑 9
2-2-3 成核與成長 10
2-3 熱差分析 15
2-4 磁性 18
2-4-1 磁性物質的種類 19
2-4-2 磁滯曲線 21
2-4-3 超順磁性 23
2-4-4 混合磁場效應 29
第三章 實驗步驟及方法 30
3-1 玻璃之熔製 31
3-2 熱處理之設計 33
3-2-1 熱處理溫度之決定 33
3-2-2 結晶化熱處理 33
3-3 結構及成分分析 34
3-3-1 X-光繞射分析 34
3-3-2 顯微組織觀察 34
3-4 磁性量測 35
3-4-1 磁滯曲線 35
3-4-2 電子順磁共振光譜 35
第四章 結果與討論 37
4-1 LFMCPS系玻璃陶瓷 37
4-1-1 LFMCPS玻璃之熱處理 37
4-1-2 Fe2O3含量對LFMCPS系玻璃陶瓷相變化之影響 43
4-1-3 Fe2O3含量對LFMCPS系玻璃陶瓷顯微結構之影響 46
4-1-4 結晶化時間對LFMCPS系列玻璃陶瓷顯微結構之影響 51
4-1-5 LFMCPS系列玻璃陶瓷之磁性量測 58
4-1-6 LFMCPS系列玻璃陶瓷之電子順磁共振光譜 64
4-1-7 Fe2O3含量對LFMCPS系列玻璃陶瓷之磁性影響 72
4-2 LFMCPST系玻璃陶瓷 75
4-2-1 LFMCPST玻璃之熱處理 75
4-2-2 Fe2O3含量對LFMCPST系玻璃陶瓷相變化之影響 83
4-2-3 Fe2O3含量對LFMCPST系玻璃陶瓷顯微結構之影響 83
4-2-4 結晶化時間對LFMCPST系列玻璃陶瓷顯微結構之影響 90
4-2-5 LFMCPST系列玻璃陶瓷之磁性量測 97
4-2-6 LFMCPST系列玻璃陶瓷之電子順磁共振光譜 103
4-2-7 Fe2O3含量對LFMCPST系列玻璃陶瓷之磁性影響 108
4-3 LFMCPS系及LFMCPST系玻璃陶瓷之比較 111
4-3-1 DTA分析結果 111
4-3-2 X-光繞射分析 111
4-3-3 顯微結構觀察 112
4-3-4 磁性性質 112
第五章 結論 116
參考文獻 117
附錄 122

[1] 吳振名, 玻璃陶瓷--陶瓷技術手冊 , 中華民國產業科技發展協進會, 第28章., 1994, pp. 963-986.
[2] 程道腴, 鄭武輝 譯, 玻璃學, 財團法人徐氏基金會, 臺北, 1992, pp. 126-129.
[3] L.L. Hench, T. Greenlee, W.C. Allen and G. Piotrowski, “An investigation of a prosthetic Material”, U. S. Army Medical Research and Development Command, Contact No. DA 17-70-C-001 Reports, No. 1-6, 1985, pp. 1970~1975.
[4] K. Singh and D. Bahadur, “Characterization of SiO2-Na2O-Fe2O3-CaO-P2O5- B2O3 glass-ceramics”, J. Mater. Sci.: Mater. in Medic., Vol. 10, 1999, pp. 481-484.
[5] Y. M. Sung, “The effect of additives on the crystallization and sintering of 2MgO-2Al2O3-5SiO2 glass-ceramics”, J. Mater. Sci., Vol. 31, 1996, pp. 5421-5427.
[6] 王建發, “Li2O-Fe2O3-MnO2-CaO-P2O5-SiO2系列玻璃陶瓷的顯微結構及其特性之研究”, 私立義守大學材料工程與科學研究所碩士論文, 2000.
[7] H. Rawson, “Properties and applications of glass”, Elsevier, New York, 1980, p. 1.
[8] Yet-Ming Chiang, Dunbar Birnie III and W. David Kingery, “Physical Ceramics”, John Wiley & Sons Inc, New York, 1997, pp. 430-464.
[9] 王木琴, “Li2O-CaO-Al2O3-SiO2系玻璃陶瓷結晶相變態之研究”, 國立成功大學礦冶及材料科學研究所博士論文, 1988.
[10] W.H. Zachariasen, “The atomic arrangement in glass”, J. Am. Ceram. Soc., Vol. 54, 1932, p. 3841.
[11] 林峰輝, “鈉鈣磷生醫骨科玻璃陶瓷之研究”, 國立成功大學礦冶及材料科學研究所博士論文, 1987.
[12] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics”, John Wiley & Sons Inc, New York, 2nd Edition, 1996, pp. 158-167.
[13] 謝世豪, 玻璃之結構與特性-陶瓷技術手冊 , 中華民國產業科技發展協進會, 第26章, 1994, pp. 876-880.
[14] Z. Strnad, “Glass-Ceramic Material”, Elsevier Science Publishing Company, Inc, 1986, pp. 9-11.
[15] P F James, “Experimental studies of crystal nucleation in glass”, Ceramic Transactions, Vol. 30, 1992, pp. 3-12.
[16] L. Barbieri, A. B. Corradi, C. Leonalli, C. Siligardi, T. Manferedini and G. C. Pellacani,“Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics”, Materials Research Bulletin, Vol. 32, No. 6, 1997, pp. 637-648.
[17] J. B. Park, and R. S. Lakes, “Biomaterials-An Introduction 2nd Edition”, Plenum Press, New York and London, 1992.
[18] 莊萬發, 超微粒子理論應用, 復漢出版社, 臺南, 1995, pp. 146-156.
[19] L. J. DeVore, S. M. Lynch and J. E. Shelby, “Formation of lead titanate glass-ceramics from borate glasses”, IEEE 2001 pp. 401-404.
[20] H. Rawson and D. T. Ceng, “Glass and its history of service”, IEE Proceedings, Vol. 135, No. 6, 1998, pp. 587-591.
[21] P. W. McMillan, “Glass Ceramic”, Academic Press, Second edition New York, 1979, pp. 1-124.
[22] M. R. Heslin and J. E. Shelby, “The effect of hydroxyl content on the nucleation and crystallization of Li2O-2SiO2 glass”, Ceramic Transactions, Vol. 30, 1992, pp. 189-195.
[23] Y. M. Sung, J. S. Lee and K. C. Shin, “The role of precursor nuclei in the crystallization of aluminosilicate glass”, J. Mater. Sci. Letters, Vol. 19, 2000, pp. 675-677.
[24] 陳道達 譯, 熱分析 , 渤海堂文化公司, 臺北, 1992, pp. 251-352.
[25] C. T. Seip, E. E. Carpenter and C. J. O`Connor, “Magnetic properties of a series of ferrrite nanoparticles synthesized in reverse micells”, IEEE Trans. Magn., Vol. 34, 1998, pp. 1111-1113.
[26] 鄭振東, 實用磁性材料 , 全華科技圖書股份有限公司, 臺北, 1999, pp. 1-1~2-18.
[27] 近角聰信撰, 張煦, 李學養編譯, 磁性物理學 , 聯經出版社, 臺北, 1982, pp. 17-21.
[28] B. D. Cullity, “Introduction to magnetic materials”, Addison-Wesley Series in Metallurgy and Materials, 1972, pp. 383-425.
[29] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman and Hall New York, 1991, pp. 185-267.
[30] Y. Ebisawa, Y. Sugimoto, T. Hayashi, T. Kokubo, K. Ohura and T. Yamamuro, “Crystallization of (FeO, Fe2O3)-CaO-SiO2 Glasses and Magnetic Properties of their Crystallized Products”, J. Ceram. Soc. Jpn., Int. Edi., Vol. 99, pp. 8-13.
[31] C. P. Bean and G. Chouteau, J. Magn. Magn. Mater., Vol. 177, 1997, p. 783.
[32] C. J. Vonnor, Y. S. Lee and J. Tang, “Superparamagnetism of ferrite particles dispersed in spherical polymeric material”, IEEE Trans. Magn., Vol. 30, 1994, pp. 257-263.
[33] B. Ryu and I. Yasui, “Crystallization behavior of CaO·Al2O3·2SiO2 glass and microstructure dependence of its thermal expansion,” Ceramic Transactions, Vol. 30, 1992, pp. 311-316.
[34] 林榮義, “鋰電子電池材料鋰-鎳-氧化合物的結構與磁性研究”, 國立中央大學物理研究所碩士論文, 2000.
[35] D. Prodan, V. V. Grecu, M. N. Grecu, E. Tronc and J. P. Jolivet, “Electron spin resonance in γ- Fe2O3 nanoparticles dispersed in a polymer matrix”, Meas. Sci. Technol.,Vol. 10, 1999, pp. L41-L43.
[36] C.Cannas, G.Concas, D. Gatteschi, A. Falqui, A. Musinu, G. Piccaluga, C. Sangregorio and G. Spano, “Superparamagnetic behaviour of γ-Fe2O3 nanoparticles dispersed in a silica matrix,” Phys. Chem. Chem. Phys.,Vol. 3, 2001, pp. 832-838.
[37] E. Herrero, M. V. Cabañas, M. Vallet-Regí, J. L. Martínez and J. M. González-Calbet, “Influence of synthesis conditions on theγ-Fe2O3 properties”, Solid State Ionics, Vol. 101-103, 1997, pp. 213-219.
[38] M. Kuźmiński, A. Ślawska-Waniewska and H. K. Lachowicz, “The influence of superparamagnetic particle size distribution and ferromagmetic phase on GMR in melt spun Cu-Co granular alloys”, IEEE Trans. Magne., Vol. 35, No. 5, 1999, pp. 2853-2855.
[39] 陳秋炳, 楊宗信,“電子順磁共振光譜儀簡介”, 科儀新知 Vol. 72, No. 4~6, 1992, pp. 78-82.
[40] J. A. Weil, J. R. Bolton and J. E. Wertz, Electron paramagnetic resonance-elementary theory and practical application, 1990, pp. 1-28.
[41] A. Karamanov and M. Pelino,“Crystallization phenomena in iron-rich glasses”, J. Non-crys. Solid, Vol. 281, 2001, pp. 139-151.
[42] F. Ledoux, E. Zhilinskaya, S. Bouhsina, L. Courcot, M. L. Bertho, A. Aboukaïs and E. Puskaric ,“EPR investigations of Mn2+, Fe3+ ions and carbonaceous radicals in atmospheric particulate aerosols during their transport over the eastern coast of the English Channel”, Atmos. Enviro., Vol. 36, 2002, pp. 939-947.
[43] V. K. Sharma and F. Waldner,“Superparamagnetic and ferromagnetic resonance of ultrafine Fe3O4 particles in ferrofluids”, J. Appl. Phys., Vol. 48, No. 10, 1997, pp. 4298-4302.
[44] C. T. Hseih, W. L. Huang and J. T. Lue ,“The change from paramagnetic resonance to ferromagnetic resonance for iron nanoparticle made by the sol-gel method”, J. Phys. Chem. Solid, Vol. 63, 2002, pp. 733-741.
[45] V. Masheva, M. Grigorova, N. Valkov, H. J. Blythe, T. Midlarz, V. Blaskov, J. Geshev and M. Mikhov,“On the magnetic properties of nanosized CoFe2O4”, J. Magne. Mater., Vol. 196-197, 1999, pp. 128-130.
[46] 余樹楨, 晶體之結構與性質 , 渤海堂文化事業有限公司,台北, 1988, pp. 415-423.
[47] I. Yasui, B. Ryu and T. Kawarazaki, “Sintering and crystallization behavior of glass powder with a composition of anorthite, CaO·Al2O3·2SiO2,” Ceramic Transactions, Vol. 30, pp. 323-326.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳依蘋(民88)。知識管理的建立與挑戰。會計研究月刊,169,15-19。
2. 張志明、劉淑娟(民89)。知識管理在學校營繕工程之運用:以花蓮縣國民中小學為例。花蓮師院學報,11,55-81。
3. 張菀珍(民89)。民間非營利組織辦理成人教育活動現況與省思。成人教育,46,24-32。
4. 張光進 (民85)。廿一世紀新興的教育企業:全球知識交換中心。文教新潮,1(1),1-5。
5. 崔之元(民88)。知識經濟:二十一世紀的希望。明報月刊,34,38-49。
6. 翁榮桐(民89)。從知識管理論教學資源中心之設立。教師天地,107,66-73。
7. 徐大偉(民90)。知識經濟概念在學校經營與管理之應用。研習資訊,18卷4期,70-78。
8. 邱兆偉(民77)。教育績效責任在美國。教育文粹,17,1-22。
9. 邱貴發 (民87)。網路世界中的學習:理念與發展。教育研究資訊雙月刊,6(1),20-27。
10. 吳清山、黃旭鈞(民89)。學校推動知識管理策略初探。教育研究月刊,77,18-32。
11. 王保進(民90)。知識經濟時代下之教育省思。教育資料與研究,41,17-25。
12. 黃秀君(民90)。「知識經濟」對學校教育之影響與因應策略。教育資料與研究,41,29-34。
13. 黃季仁 (民80)。科技發展與教育革新。資訊與教育,21,30-36。
14. 陳幸仁(民85)。學校文化與學校效能關係的探討。國民教育, 36 , 56-62。
15. 陳禹辰(民88)。知識管理的意涵、特性與程序。中國勞工月刊,88(12),33-35。