(54.236.58.220) 您好!臺灣時間:2021/02/27 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鐘仲毅
研究生(外文):Chung-yi Chung
論文名稱:無鹵素基板材料之耐燃特性及其它物理性質研究
論文名稱(外文):A Study on the Flammability and Physical Properties of Halogen-Free Substrate Materials
指導教授:林永森林永森引用關係
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:107
中文關鍵詞:無鹵素耐燃性燃燒性94V0LOI
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1285
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:2
本研究主旨在探討無鹵素基板材料及含鹵素基板材料之耐燃性、燃燒性及其它物理性質。本實驗以Electron Spectroscopy for Chemical Analysis (ESCA)及傅立葉紅外線光譜儀(FTIR)鑑定其化學成分及分子結構,用以鑑定含氫氧化鋁、無機填充材、磷化物及溴化物難燃劑之板材及防焊綠漆;以熱重量損失分析儀(Thermo gravimetric Analyzer;TGA)來分析其裂解溫度,極限氧指數測試儀及UL94燃燒測試來分析其耐燃性質;及其它之物理性質之測試。
由結果顯示,基板材料在耐燃性上、裂解溫度之高低及其它物理性質之測試結果,含氫氧化鋁、無機填充材料及含溴化物之基板材料在耐燃性及燃燒特性上,皆符合94V0(有焰時間總合<50秒)及極限氧指數值(LOI)>26規範之要求,其中以添加無機填充材之板材之LOI=40之表現最優,而在10wt.﹪loss裂解的溫度,無鹵素基板材料HL832NB(396℃)及E679FG(397℃)甚至比含鹵素基板材料HL832(330℃)要高。由防焊綠漆之TGA結果顯示,其裂解溫度均在256℃以上,均具有良好之耐熱性。
而板材在其它物理性質之測試結果顯示,在這些物理特性之規範下及要求標準中,本實驗所有之板材均達到所要求標準之範圍內。
The main purpose of this research is to study the flammability physical properties of halogen-free substrate materials and halogen substrate materials.
The testing of ESCA and FTIR were carried out to identify the chemical composition and structure and also to identify the core material and solder mask that compose Al( OH) 3, fillers , phosphorus . By the TGA to analyze the decomposition temperature, the testing of Limit Oxygen Index and UL94 were proved the flammability and other physical property.
The testing results shows the core material that compose Al(OH)3, fillers, phosphorus, it’s flammability and combustion character all meet 94VO(totally flame times is less than 50 seconds) and LOI>26 specification requirement, and core material that contains fillers of LOI=40 is the best one. In the condition of 10 wt% loss, the decomposition temperature of halogen —free substrate core material is higher than halogen substrate core material. It shows the decomposition temperature of HL832NB is 396℃, E679FG is 397℃, and HL832 is only 330℃.
In addition , the result of TGA also shows, the solder mask’s decomposition temperature is higher than 256℃ and has the excellent flammability.
The core materials were used in this experiment their physical properties all meet the standard requirement.
中文摘要...........................I
英文摘要..........................II
誌謝.............................III
目錄..............................IV
表索引...........................VII
圖索引............................IX
第一章 緒論........................1
1-1 研究背景與動機..............1
第二章 原理及文獻回顧..............2
2-1 燃燒基本理論................2
2-1-1 燃燒三角理論...............2
2-1-2 高分子燃燒理論 .........3
2-1-3 燃燒產物毒性介紹.............7
2-2 難燃高分子材料之相關研究.....10
2-2-1 難燃高分子的基本原理....10
2-2-2 難燃劑之應用............12
2-2-2-1 難燃劑之定義........12
2-2-2-2 難燃劑之分類........12
2-2-2-3 選用難燃劑之要領.....14
2-2-3 添加型難燃劑的阻燃機構......15
2-2-3-1 鹵素系難燃劑..............15
2-2-3-2 磷系難燃劑 ................18
2-2-3-3 水合無機物難燃劑...........22
2-3 高分子燃燒性評估方法..........25
2-3-1 氧指數測試...................25
2-3-2 火焰傳播...............27
2-4 基板材料介紹...............30
2-4-1 板材...................30
2-4-2 防焊綠漆...............31
2-5 其它物理特性...............32
第三章 實驗........................35
3-1 實驗材料....................35
3-2 實驗儀器介紹................36
第四章 結果與討論..................40
4-1 板材及防焊綠漆的熱裂解行為.40
4-1-1無鹵素板材HL832NB、E679FG及含鹵素板材HL832的熱裂解行為.................................40
4-1-2 無鹵素防焊綠漆AUS 502、AUS 308、SR 7200及含鹵素防焊綠漆AUS 5的化學組成鑑..................49
4-2 板材及防焊綠漆的化學組成鑑定..57
4-2-1 無鹵素板材HL832NB、E679FG及含鹵素板材HL832的化學組成鑑定.................................57
4-2-2 無鹵素防焊綠漆AUS 502、AUS 308、SR 7200及含鹵素防焊綠漆AUS 5化學組成鑑定..................68
4-3 板材及防焊綠漆的分子結構鑑定.83
4-3-1 無鹵素板材HL832NB、E679FG及含鹵素板材HL832的分子結構鑑定..................................83
4-3-2 無鹵素防焊綠漆AUS 502、AUS 308、SR 7200及含鹵素防焊綠漆AUS 5的分子結構鑑定.................88
4-4 板材的燃燒情形...............94
4-5 板材的耐燃性質...............96
4-6 無鹵素及韓鹵素板材的表面阻抗、體積阻抗、Peel testing、介電常數、擴散因子、PCT、耐熱性及吸濕率及熱膨脹係數等特性...98
第五章 結論........................102
參考文獻............................102
表索引
表2-1各種高分子之分解溫度.............5
表2-2一氧化碳濃度時間與反應表.........9
表4-1 板材TGA之各項數據..............49
表4-2 防焊綠漆TGA之各項數據 ..........57
表4-3板材HL832NB C1s鍵結表............58
表4-4板材HL832NB O1s鍵結表............58
表4-5板材E679FG C1s鍵結表.............59
表4-6板材E679FG O1s鍵結表.............59
表4-7板材HL832 C1s鍵結表..............60
表4-8板材HL832 O1s鍵結表..............60
表4-9防焊綠漆AUS 502 C1s鍵結表........68
表4-10防焊綠漆AUS 502 O1s鍵結表.......69
表4-11防焊綠漆AUS 308 C1s鍵結表.......69
表4-12防焊綠漆AUS 308 O1s鍵結表.......70
表4-13防焊綠漆SR 7200 C1s鍵結表.......70
表4-14防焊綠漆SR 7200 O1s鍵結表.......71
表4-15防焊綠漆AUS 5 C1s鍵結表.........71
表4-16防焊綠漆AUS 5 O1s鍵結表.........72
表4-17 UL94耐燃測試結果比較表.........93
表4-18三種板材LOI值及殘交量之比較表...95
表4-19板材之體積電阻率及表面電阻率比較表...97
表4-20板材Peel Strength測試比較表.....97
表4-21板材介質常數測試值比較表........97
表4-22板材散失因素測試值比較表........98
表4-23板材之吸濕率測試值比較表........98
表4-24板材之PCT及耐熱性測試值比較表...99
表4-25板材熱膨脹係數值比較表..........99
表4-26板材物理特性標準表.............100
圖索引
圖2-1燃燒三角理論圖......................5
圖2-2高分子燃燒過程......................6
圖2-3添加型難燃劑之詳細分類.............13
圖2-4 HBr與HCl添加至聚丙稀之限氧指數值..17
圖2-5 磷系難燃劑凝縮相之物理變化........19
圖2-6 膨脹型塗層之反應機構..............21
圖2-7 氫氧化鋁的DTA與TGA熱譜圖..........22
圖2-8 氫氧化鎂的DTA與TGA熱譜圖..........23
圖2-9 氧指數測試儀器機構................26
圖2-10 火焰傳撥方向.....................27
圖2-11 垂直燃燒測試圖...................27
圖2-12 基板頗面圖.......................30
圖2-13 Peel Strength測試方法示意圖......32
圖2-14翹曲現象圖........................34
圖4-1板材HL832NB之TGA圖譜(30℃-850℃,20℃/min)......42
圖4-2板材HL832NB DSC圖譜................43
圖4-3板材E679FG之TGA圖譜(30℃-850℃,20℃/min).......44
圖4-4板材E679FG DSC圖譜.................45
圖4-5板材HL832之TGA圖譜(30℃-850℃,20℃/min)........46
圖4-6板材HL832 DSC圖譜..................47
圖4-7板材之TGA比較圖譜(30℃-850℃,20℃/min).........48
圖4-8防焊綠漆AUS 502 TGA圖譜(30℃-850℃,20℃/min)...52
圖4-9防焊綠漆AUS 308 TGA圖譜(30℃-850℃,20℃/min)...53
圖4-10防焊綠漆SR 7200 TGA圖譜(30℃-850℃,20/min)....54
圖4-11防焊綠漆AUS 5 TGA圖譜(30℃-850℃,20℃/min)....55
圖4-12防焊綠漆TGA比較圖譜(30℃-850℃,20℃/min)......56
圖4-13 Model of BT Resin圖..............61
圖4-14板材HL832NB化學鍵結分析圖.........62
圖4-15 板材HL832NB ESCA圖譜 .............63
圖4-16 板材E679FG ESCA化學鍵結圖........64
圖4-17 板材E679FG ESCA圖譜..............65
圖4-18板材HL832化學鍵結分析圖...........66
圖4-19板材HL832 ESCA圖譜................67
圖4-20各類含磷化物綠漆Model圖...........73
圖4-21各類含溴化物綠漆Model圖...........74
圖4-22防焊綠漆AUS 502化學鍵結分析圖.....75
圖4-23防焊綠漆AUS 502 ESCA圖譜..........76
圖4-24防焊綠漆AUS 308化學鍵結分析圖.....77
圖4-25防焊綠漆AUS 308 ESCA圖譜..........78
圖4-26防焊綠漆SR 7200化學鍵結分析圖.....79
圖4-27防焊綠漆SR 7200 ESCA圖譜..........80
圖4-28防焊綠漆AUS 5化學鍵結分析圖.......81
圖4-29防焊綠漆AUS 5 ESCA圖譜............82
圖4-30板材HL832NB IR圖譜................85
圖4-31板材HL832 IR圖譜..................86
圖4-32板材E679FG IR圖譜.................87
圖4-33防焊綠漆AUS 502 IR圖譜............90
圖4-34防焊綠漆AUS 308 IR圖譜............91
圖4-35防焊綠漆SR 7200 IR圖譜............92
圖4-36防焊綠漆AUS 5 IR圖譜..............93
圖4-37板材HL832NB燃燒情形...............95
圖4-38板材HL832燃燒情形.................95
圖4-39板材E679FG燃燒情形................95
[1] Troitzsch, J., International Plastics Flammability Handbook, Principle - Regulation-Testing and Approval, 2nd edition. Chap. 5, Hanser Publisher, New York (1990)
[2] 沈永清、張信貞、莊學平、張榮樹,「高分子耐燃機構與原理」,化工資訊,第九卷,第二期,第15-32頁,民國八十四年。
[3] Ceric, B. and E. Simon, Polymer Degradation and Stability, Vol.33, pp.307-323(1991)
[4] Harold, L. Kaplan ,Auther F. Grand and Gordon E. Hartzell,“Toxicity and the Somke Problem” Fire Safety J., Vol.7, pp. 11-23,(1984)
[5] Suess, M. J., K. Grefen and D. W. Reininch, Ambient Air Pollutants from Industrial Sources — a Reference Handbook, Elsevier, (1985)
[6] Ballistreri, A. J., Polymer, Sci. Polymer Chem. Ed.,21. 679 (1983)
[7] Camio, G., and L. Costa, Polymer Degration and Stability, Vol.20, pp.271-294(1988)
[8] John, T. L., “Thermoplastic Polymer Additives”, Marcel Dekker, New York and Basel, pp.93-203(1989)
[9] Cullis G. F. and M. M. Hirschler, “The Combustion of Organic Polymers ”, Clarendon Press . Oxford . pp.93-225(1981)
[10] Larsen, E. R. , ACS Organic Coatings and Plastics Chemistry Preprints, Vol.36(2), pp.310 (1976)
[11] Hindersinn, R. R. and G. M. Wagner,“ Encyclopedia of Polymer Science and Technology ”, Vol 7 Interscience, New York (1967)
[12] Johnson. P. R. , “Third International Cellulose Plastics Conference”, Spi Preprints, Montreal, Canada, Sep 27 (1972)
[13] Rosser, W. A. , H. Wise, and J. Miller,“ Seventh International Symposium on Combustion”, Butterworth''s, London, pp.175 (1959)
[14] Hastie, J. W. , Combustion and Flame , Vol.21, 49(1973)
[15] Hirschler, M. M. ,“Development polymer stabilization”, Vol 5 (G Scort Applied Science Publisher, London(1982))
[16] Schwarz, R.L., “Flame Retardancy of Polymeric Materials”, W. C. Kuryla and Papa, A. J. Eds. Dekker, New York , Vol.2, Chapter 2, pp. 104(1973)
[17] Lyons, J. W. , J“Fire and Flammability”Vol.1, pp.302-(1970) ; The “Chemistry and Uses of Fire Retardants”, Wiley-Interscience, New York, 1970, pp.20-24
[18] Palmer, H. B and D. J. Seery, Combustion and Flame, Vol.4, pp.213 (1960)
[19] Kay, M., A. F. Price and I. Lavry, J.“Fire Retardant Chem.”, Vol.6 ,pp.69 (1979)
[20] Granzow, A., Ace. Chem. Res., Vol.11, pp.177 (1978)
[21] Martin, F. J. and K. R. Price, “Journal Application Polymer Science.”, Vol.12, pp. 143 (1968)
[22] Zhang, J., Horrocks, A. R. and M. E. Hall“The Flammability of Polyacrylonitrile and its Copolymers IV. The Flame Retardant Mechanism of Ammonium Polyphosphate”, Fire and Material, Vol.18, pp.307-312 (1994)
[23] Hall, M.E. ,Zhang, J. and Horrocks, A. R.“The Flammability of Polyacrylonitrile and its Copolymer III. Effect of Retardants”,Fireand Materials,Vol.l8.pp231-241(1994)
[24] Camino, G., Martinasso, G. and L. Costa, Polymer Degradation and Stability, Vol.27, pp.285-298,1990.
[25] Peter, R. Homsby and Colin L. Watson, Polymer Degration and Stability, Vol.30, pp.73-87 ,1990.
[26] Pal, G. and H. Macskasy,“ Plastics Their Behavior in Fires”, New York pp.378 ,1991.
[27] Miyata, S., Imahashi, T. and Anabuki, H.“Fire-Retardant Polypropylene with Magnesium Hydroxide,”Journal ofPolymer Science, Vol.25, pp.415-425,1980.
[28] 〝The Application of Magnesium Hydroxide as a Fire Retardant and Smoke-suppressing Additive for Ploymer〞Peter R. Homsby, Fire and Material, Vol.18, pp.269-276,1994.
[29] Rychly, J. K., Vesely, E.Gal and M. Kummer, Polymer Degradation and Stability, 30, pp.57-72 ,1990.
[30] Keating, L. S. Petrie and G. Beekmon“Spotlight:Everything is under control at bustling compounder,s plant,” Plastics Compounding, Vol.4, pp.40,1986.
[31] Connelly, W. J. and A. M. Thomton“Aluminum hydrate filler in polyester systems,” Mod. Plast. Vol.43, No.2 , pp. 154,1965.
[32] Martin, F. J. and K. R. Price, J.“Appl. Polymer Sci.,”Vol.12, pp143,1968.
[33] Soblev, I. and E. A. Woychesin, I, “Fire and Flammability / Fire Retardant Chemistry,” Vol.1 ,pp.13, 1974.
[34] Hornsby, P. R. and C. L. Waston.“Magnesium hydroxide-a combined flame retardant and smok suppressant filler for thermoplastics,” Plastics and Rubber Processing and Applications, Vol.6, pp.l69,1986.
[35] ASTM D 2863,“Standard For Flammability of Plastic Materials for Parts in Devices and Appliances,”Underwriters Laboratories INC.(UL),1994.
[36] 林水春編著,印刷電路板設計與製作,全華科技圖書股份有限公司,2000 .
[37] 陳元鴻, “電路板資訊,”vol 22,pp. 48,1991.
[38] 顏知愆, “電路板資訊, ”vol.90, pp.119,1996.
[39] US Patent 6015651
[40] US Patent 5753722
[41] 吳朗, 電子陶瓷-介電,全欣資訊圖書股份有限公司,1994.
[42] HITACHI CHEMICAL
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔