跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃瑞祥
研究生(外文):Ruei-shang Huang
論文名稱:氫氧基磷灰石陶瓷離子交換之機械性質與其粉末製備
論文名稱(外文):Mechanical Properties of Ion-Exchange Hydroxyapatite Ceramics and Its Powder Preparation
指導教授:許澤勳
指導教授(外文):Tzer-Shin Sheu
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:60
中文關鍵詞:氫氧基磷灰石離子交換法機械性質微結構合金設計
外文關鍵詞:HydroxyapatiteIon-exchangemechanical propertiesmicrosturcturealloy design
相關次數:
  • 被引用被引用:6
  • 點閱點閱:581
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
使用共沈澱方法(coprecipitated)和商業用粉末等兩種不同來源的粉末,當作HA的起始粉末。其中共沈澱粉末的形態是以溶液pH值的變異來加以探討。
一般而言,陰離子F-比OH-小,對於這兩種離子在口腔中離子交換對天然牙齒的機械性質可能的影響。我們將在體外利用燒結的HA陶瓷來模擬,加以評估它們的效應。
針對離子交換的作業,是將燒結後的HA樣品經表面拋光及去除應力處理後,置入105℃含2﹪NaF的水溶液中為單離子交換,然後在100℃蒸餾水中做不同時間處理為二次離子交換。而以四點彎曲法來測試這些樣品機械性質。
燒結溫度對機械性質的影響如下:
1.隨著燒結溫度的提高,其彎曲強度隨著增加,但其可靠性則呈現相反的趨勢。如1350℃燒結的試片彎曲強度為45MPa,而1180℃燒結的試片,其彎曲強度為31MPa。
2.在1300℃燒結的HA陶瓷試片,雖經不同的表面處理,然而其彎曲強度沒有明顯的區別,可見具有良好緻密性的試片表面粗糙度不會影響其彎曲強度太大。然而表面粗糙度卻會影響可靠性,亦即試片表面越粗糙,其可靠性越低。
3.以1200℃燒結的HA陶瓷試片,經單次或二次離子交換後,其彎曲強度沒有明顯的增加,是因為緻密性較差。但二次離子交換後的試片,其可靠性仍增加約30﹪,可見將最大壓應力導入次表面是提升可靠性的有效的措施。
至於pH值對粉末種類及形態的影響:以溶液反應七天為例,當以pH=6,7,10時,粉末析出相主要為HA,而其形態為片狀。當pH=4,5時,析出的相主要為b-TCP。而其粉末形態為針狀。總和以上的結果,當溶液pH增加時,HA比b-TCP佔優勢。
Abstract
Two types of starting powders were used in this study, commercial and coprecipitated forms. As to coprecipitation powder, the correlation between its morphology and pH was observed in this study.
Anion F- has a smaller ionic size than OH-. When these two ions were subjected to mutual ion-exchanges in the oral environments. The mechanical properties of natural teeth were expected to be affected. For further understanding the effect of mutual ion-exchanges for these two ions, sintered HA (hydroxyapatite) ceramics were used in vitro to study their mechanical properties.
For ion-exchange practices, polished or further annealed specimens were ion-exchanged in the 2wt﹪NaF aqueous solution at 105℃ or further double ion-exchanged a water solution at 100℃ for different periods of time. A four-point bending method was used to measure the flexural strength of these tested specimens.
The relationships between sintering temperature and mechanical properties were summarized as follows.
1. As to the effect of sintering temperature, flexural strength of these sintered specimens increased with the increasing sintering temperature. But a reverse phenomenon was found in the mechanical reliability. For example, flexural strength is 45MPa for samples sintered at T=1350℃ and 31MPa at T=1180℃.
2. HA specimens sintered at 1300℃, had a lower porosity, and its flexural strength was found not significantly affected by the various surface treatments. However, mechanical reliability of these specimens was affected by the surface roughness.
3. Even though HA ceramics sintered at 1200℃ had a higher porosity, its flexural strength was still not significantly increasing after a single, or double ion-exchange. However, mechanical reliability was about 30﹪ increasing for samples with a double ion-exchange. This was because the maximum compressive stress was located at sub-surface.
The correlations among powder morphology and pH value (after 7 days) were summarized as follows. The major phase was HA when its precursor solution’s pH=3,7,&10, and b-TCP for pH=4 and 5. Therefore, with an increasing pH value, powders with HA crystal form (plate) were predominated over b-TCP (needle like).
目錄
中文摘要 ---------------------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------------------- iii
誌謝 ---------------------------------------------------------------------------------------- v
目錄 --------------------------------------------------------------------------------------- vi
表目錄 ------------------------------------------------------------------------------------- x
圖目錄 ------------------------------------------------------------------------------------ xi
第一章 序論 ----------------------------------------------------------------------------1
第二章 背景與理論基礎 ------------------------------------------------------------4
2-1 生醫陶瓷簡介------------------------------------------------------------------------4
2-1-1 生醫材料定義---------------------------------------------------------------4
2-1-2 生醫陶瓷應用簡要歷史---------------------------------------------------4
2-1-3 生醫陶瓷之市場需求------------------------------------------------------4
2-1-4 生醫陶瓷材料的種類------------------------------------------------------7
2-1-5 生物活性----------------------------------------------------------------------9
2-2 各類生醫陶瓷特性----------------------------------------------------------------10
2-2-1 氫氧基磷灰石(HA, Hydroxyapatite) --------------------------------10
2-2-2 氟基磷灰石(FA, Fluorapatite) -----------------------------------------12
2-2-3 生醫玻璃--------------------------------------------------------------------13
2-3 氫氧基磷灰石離子交換之種類與應用--------------------------------------15
2-4 氟與生物體的相互關係---------------------------------------------------------16
2-4-1 氟化物的使用沿革-------------------------------------------------------16
2-4-2 氟的特性--------------------------------------------------------------------16
2-4-3 氟化物與疾病治療-------------------------------------------------------16
2-4-4 氟化物的使用安全-------------------------------------------------------17
2-4-5 氟化物對人體的反應的相關研究------------------------------------18
2-5 殘餘應力對機械性質影響------------------------------------------------------19
2-5-1 殘留應力的影響----------------------------------------------------------19
2-5-2機械性質測試及其可靠性-----------------------------------------------20
2-5-3孔隙度與機械性質關係--------------------------------------------------21
2-6 氫氧基磷灰石粉末製備影響因素---------------------------------------------21
2-6-1 生物體中HA的形成-----------------------------------------------------21
2-6-2 體外HA的合成-----------------------------------------------------------22
2-6-3 磷酸鈣鹽類的高溫性質-------------------------------------------------24
2-7 骨骼的電性質(Electrical Property)----------------------------------------25
第三章 實驗方法--------------------------------------------------------------------27
3-1 實驗藥品與儀器-------------------------------------------------------------------27
3-1-1 實驗藥品--------------------------------------------------------------------27
3-1-2 實驗儀器--------------------------------------------------------------------27
3-2 實驗步驟及相關參數-------------------------------------------------------------29
3-2-1 粉末製備--------------------------------------------------------------------29
3-2-2 粉末煆燒溫度測定-------------------------------------------------------29
3-2-3 燒結溫度測定-------------------------------------------------------------29
3-2-4 試片準備--------------------------------------------------------------------30
3-2-5 離子交換作業-------------------------------------------------------------31
3-2-6 機械性質測定-------------------------------------------------------------32
3-2-7 微觀組織觀察-------------------------------------------------------------32
3-2-8 相組成測試----------------------------------------------------------------32
3-2-9 FTIR(傅利葉式轉換紅外線光譜儀) ---------------------------------33
第四章 結果與討論------------------------------------------------------------------34
4-1 粉末之煆燒溫度-------------------------------------------------------------------34
4-2 燒結溫度與粉末性質的關係---------------------------------------------------34
4-3 溫度與HA粉末相穩定性影響----------------------------------------------37
4-4 機械性質方面------------------------------------------------------------------37
4-4-1 彎曲強度與燒結溫度的關係---------------------------------------37
4-4-2 彎曲強度與離子交換的關係---------------------------------------43
4-4-3 機械性質之可靠性分別與溫度及離子交換處理的關係------45
4-5 試片表面析出物之微觀組織------------------------------------------------48
4-6 HA粉末與pH值之間的關係------------------------------------------------51
4-6-1 粉末大小----------------------------------------------------------------51
4-6-2 粉末形狀和組成------------------------------------------------------52
4-6-3 粉末之FTIR光譜-----------------------------------------------------54
第五章 結論----------------------------------------------------------------------------55
第六章 參考文獻---------------------------------------------------------------------56
表目錄
表2-1.1 生醫材料應用發展歷史--------------------------------------------------6
表2-1.2生醫材料生物活性指數表(體內)----------------------------------------10
表2-2.1氫氧基磷灰石的物理與化學性質----------------------------------------12
表2-2.2生醫玻璃和玻璃陶瓷的性質與用途比較------------------------------14
表3-2.1實驗變數與代號表-----------------------------------------------------------33
表4-2.1粉末粒徑分佈與最佳燒結溫度----------------------------------------36
圖目錄
圖2-1.1生醫陶瓷於臨床上的應用圖------------------------------------------------5
圖2-1.2植入材對骨成長速率的影響圖------------------------------------------9
圖2-2.1 氫氧基磷灰石中各離子的位置。----------------------------------------10
圖2-2.2 HA的失序排列圖------------------------------------------------------------12
圖2-2.3 玻璃陶瓷製程簡圖----------------------------------------------------------15
圖2-5.1正常與修改過後的殘餘應力分佈圖-------------------------------------19
圖2-5.2四點彎曲試驗樣品之示意圖-------------------------------------------20
圖2-6.1水蒸氣壓與溫度對含磷酸鈣相的影響---------------------------------25
圖2-6.2 CaO-P2O5系統在PH2O=500mmHg的高溫相圖-----------------------26
圖4-1.1 在不同pH值的條件下,溶液所析出粉末的DTA曲線圖--------34
圖4-2.1 HA原始粉末燒結曲線圖--------------------------------------------------35
圖4-2.2 HA原始粉末90~150mm燒結曲線圖-----------------------------------35
圖4-2.3 HA原始粉末45~75mm燒結曲線圖-------------------------------------36
圖4-2.4 HA原始粉末45mm以下燒結曲線--------------------------------------36
圖4-3.1 不同燒結溫度的XRD相結構繞射圖----------------------------------37
圖4-4.1 不同燒結溫度對彎曲強度影響------------------------------------------38
圖4-4.2 燒結溫度1180℃的樣品的破斷面微觀組織-------------------------39
圖4-4.3 燒結溫度1200℃的樣品的破斷面微觀組織-------------------------39
圖4-4.4 燒結溫度1300℃的樣品的破斷面微觀組織-------------------------39
圖4-4.5 燒結溫度1350℃的樣品的破斷面微觀組織-------------------------39
圖4-4.6 編號D7樣品的破斷面微觀組織----------------------------------------39
圖4-4.7 編號E9樣品的破斷面微觀組織-----------------------------------------39
圖4-4.8 編號F25樣品的破斷面微觀組織---------------------------------------40
圖4-4.9 編號G1樣品的破斷面微觀組織----------------------------------------40
圖4-4.10 編號H13樣品的破斷面微觀組織-------------------------------------40
圖4-4.11 編號I7樣品的破斷面微觀組-------------------------------------------40圖4-4.12 編號J14樣品的破斷面微觀組織--------------------------------------40
圖4-4.13 編號K9樣品的破斷面微觀組織---------------------------------------40
圖4-4.14 編號D7樣品的表面粗糙度圖------------------------------------------41
圖4-4.15 編號E9樣品的表面粗糙度圖------------------------------------------41
圖4-4.16 編號F25樣品的表面粗糙度圖-----------------------------------------42
圖4-4.17 編號G1樣品的表面粗糙度圖------------------------------------------42
圖4-4.18 不同表面處理對離子交換後彎曲強度影響------------------------42
圖4-4.19 單、二次離子交換前後之平均彎曲強度-----------------------------44
圖4-4.20 編號I7樣品的表面粗糙度圖-------------------------------------------44
圖4-4.21 編號J14樣品的表面粗糙度圖-----------------------------------------44
圖4-4.22 編號I7樣品的表面微觀組織----------------------------------------45
圖4-4.23 編號J14樣品的表面微觀組織---------------------------------------45
圖4-4.24 不同燒結溫度下之Weibull plot-------------------------------------47
圖4-4.25 不同表面處理對離子交換後可靠度影響--------------------------47
圖4-4.26 單、二次離子交換前後對可靠性影響------------------------------48
圖4-4.27 編號H13樣品的表面粗糙度-----------------------------------------48
圖4-4.28 編號K9樣品的表面粗糙度圖---------------------------------------48
圖4-5.1 編號J14樣品的表面微觀組織----------------------------------------49
圖4-5.2 編號J14樣品的表面微觀組織----------------------------------------49
圖4-5.3 編號K9樣品的表面微觀組織----------------------------------------49
圖4-5.4 編號K9樣品的表面微觀組織----------------------------------------49
圖4-5.5 根據圖4-5.4中編號K9樣品的表面上B點所進行的EDXS光譜--------------------------------------------------------------------------------------50
圖4-5.6 根據圖4-5.2中編號J14樣品的表面上C點所進行的EDXS光譜--------------------------------------------------------------------------------------50
圖4-5.7 根據圖4-5.2中編號J14樣品的表面上D點所進行的EDXS光譜--------------------------------------------------------------------------------------51
圖4-6.1 室溫下以pH=4之磷酸鈣溶液析出之粉末型態-------------------52
圖4-6.2 室溫下以pH=5之磷酸鈣溶液析出之粉末型態-------------------52
圖4-6.3 室溫下以pH=6之磷酸鈣溶液析出之粉末型態-------------------53
圖4-6.4 室溫下以pH=7之磷酸鈣溶液析出之粉末型態-------------------53
圖4-6.5 室溫下以pH=10之磷酸鈣溶液析出之粉末型態------------------53
圖4-6.6 0℃下以pH=4之磷酸鈣溶液析出之粉末型態----------------------53
圖4-6.7 不同pH值下析出粉末的XRD繞射圖-------------------------------53
圖4-6.8 起使粉末HA的FTIR光譜圖------------------------------------------54
第六章 參考文獻
[1].Tzer-Shin Sheu, Cheu-Jen Ou, Liang-Yih Hon, and Der-Yuang Chen, “Hydrated Behaviors and Mechanical Properties of Silicate-containing Dental Glass Ceramics,” Proceedings of the National Science Council, R.O.C. Part A , vol.24, no.4, pp.301-305, July 2000
[2].Patty Wassenaar, ”G-C Ceramicoat: An ion exchange hardener for ceramics,” Australian Dental Journal, p.474, 1990
[3].D.J. Green, R. Tandon, V. M. Sglavo, “Crack Arrest and Multiple Cracking in Glass Through the Use of Designed Residual Stress Profiles,” Science , vol.283, no.26, pp.1295-1297, February 1999
[4].K.J. Anusavice, B. Hojjatie and T.C. Chang, ”Effect of Grinding and Fluoride-gel Exposure on Strength of Ion-exchanged Porcelain,” J. Dent. Res., vol.73, no.8 pp.1444-1449, Auguest 1994
[5].K.J. Anusavice, C. SHEN and R.B. Lee, ”Strengthening of Feldspathic Porcelain by Ion Exchange and Tempering,” J. Dent. Res., vol.71, no.5, pp.1134-1138, May 1992
[6].H. Fischer, H.R. Maier, R. Marx, “Improved reliability of leucite reinforced glass by ion exchange,” Dental Materials, vol.l6, pp.120-128, 2000
[7].H.R. Rawls, B.F. Zimmerman, “Fluoride-Exchanging Resins for Caries Protection,” Caries Res., vol.17, pp.32-43, 1983
[8].L.A. Aponte-Merced and F.F. Feagin, “Effect of fluoride on ion exchange, remineralization and acid resistance of surface enamel,” Journal of Oral Pathology, vol.8, pp.333-339, March 1979
[9].Clarkson et al., ”International Collaborative Research on Fluoride,” J. Dent. Res., vol.79, no.4, pp.893-904, 2000
[10].John J. Clarkson and acinta McLoughlin, ”Role of fluoride in oral health promotion,” International Dental Journal, vol.50, pp.119-128, 2000
[11].張淑真, 水熱法合成氫氧基磷灰石之研究, 中原大學化學所碩士論文(1993)。
[12].J.B. Park and R.S. Lakers, Biomaterials: An Introduction, 2nd ed, Plenum Press, New York, 1992
[13].P.Luo and T.G. Nieh, ”Preparing hydroxyapatite powders with controlled morphology,” Biomaterials, vol.17, no.20, pp.1959-1964, 1996
[14].S.W.K. Kweh, A. Khor and P. Cheang, ”The production and characterization of hydroxyapatite(HA) powders,” Journal of Materials Processing Technology, vol.89-90, pp.373-377, 1999
[15].John A.Dean, Lange’s HandBook of Chemistry Fourteenth edition, section8.7
[16].The Merck Index Eleventh Edition, P.1669
[17].陳弘森, 氟化物對小白兔乳牙牙根吸收的影響, 高雄醫學大學牙醫學研究所博士論文(1995)
[18].K.T. Oh, Y.S. Park, “Plasma-sprayed coating of hrdroxyapatite on super austenitic stainless steels,” Surface & Coatings Technology, vol.110, pp.4-12, 1998
[19].Etienne Bouyer, Francois Gitzhofer, and Maher I. Boulos, “Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma,” IEEE Transactions on Plasma Science, vol.25, no.5, pp.1066-1072, October 1997
[20].Jaroslav Cihlář and Martin Trunec, ”Injection moulded hydroxyapatite ceramics,” Biomaterials, vol.17, no.19, pp.1905-1911, 1996
[21].Xuebin Zheng, Minhui Huang, and Chuanxian Ding, “Bond strength of plasma-sprayed hydroxyapatite/Ti composite coating,” Biomaterials, vol.21, pp.841-849, 2000
[22].Kyuseog Hwang, Jongeun Song, Boan Kang, and Yeongjoo Park, “Sol-gel derived hydroxyapatite films on alumina substrates,” Surface & Coatings Technology, vol.123, pp.252-255, 2000
[23].H.E. Lundager Madsen, F. Christensson, L.E. Polyak, E.I. Suvorova, M.O. Kliya, and A.A. Chernov, ”Calcium phosphate crystallization under terrestrial and microgravity conditions,” Journal of crystal growth, vol.152, pp.191-202, 1995
[24].Xiaodan Sun, Chunlai Ma, Yude Wang, and Hengde Li, “Effects of polarization of calcium phosphate,” Materials Letters, vol.47, pp.267-270, 2001
[25].Eric M. Rivera, Miguel Araiza, Witold Brostow, Victor M. Castaňo, J.R. Díaz-Estrada. R. Hernández, and J. Rogelio Rodríguez, “Synthesis of hydroxyapatite from eggshells,” Materials Letters, vol.41, pp.128-134, 1999
[26].Ladislav Pach and Sridhar Komarneni, “Precipitation of hydroxyapatute film under dynamic conditions,” Materials Research Bulletin, vol.34, nos.12/13, pp.1859-1865, 1999
[27].Y. Fang, D.K. Agrawal, D.M. Roy, R. Roy, and P.W. Brown, ”Ultrasonically accelerated synthesis of hydroxyapatite,” Materials Research Society, vol.7, no.8, pp.2294-2298, August 1992
[28].P. Luo, and T,G, Nieh, “Synthesis of ultrafine hydroxyapatite particles by a spray dry method,” Materials Sciance and Engineering:C3, pp.75-78, 1995
[29].Paul Calvert, and Stephen Mann, “The negative side of crystal growth,” Nature, vol.386, no.13, pp.127-129, March 1997
[30].G.K. Lim, J. Wang, S.C. Ng, and L.M. Gan, “Processing of fine hydroxyapatite powders via an inverse microemulsion route,” Materials Letters, vol.28, pp.431-436, October 1996
[31].H.B. Lu, C.L. Ma, H. Cui, L.F. Zhou, R.Z. Wang, F.Z. Cui, “controlled crystallization of calcium phosphate under stearic acid monolayers,” Journal of crystal growth, vol.155, pp.120-125, 1995
[32].Sang-Hoon Rhee, and Junzo Tanaka, “Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid,” Biomaterials, vol.20, pp.2155-2160, 1999
[33].陳克紹、蔡瑞哲、楊木榮、陳家杰、伍德馨、陳天牧、林峰輝, “PP不織布表面與生解性高分子水膠之複合研究,” 2002工程科技與中西醫學應用研討會, 台中, 逢甲大學, pp.E2.116-E2.120, 二零零二年 五月
[34].L. Bernard, M. Freche, J.L. Lacout, and B. Biscans, “Preparation of hydroxyapatite by neutralization at low temperature-influence of purity of the raw material,” Powder Technology, vol.103, pp.19-25, 1999
[35].A. Ravaglioli, and A. Krajewski, Bioceramics, Chapman & Hall, London, 1992
[36].Nenad Ignjatovie, Simonida Tomic, Momcilo Dakic, Miroslav Miljkovie, Milenko Plavsic, and Dragan Uskokovic, “Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials,” Biomaterials, vol.20, p.809, 1999
[37].Paul W. Brown, and Brent Constantz, Hydroxyapatite and Related Materials, CRC Press, Boca Raton, 1994
[38].M, Cabrini, A. Cigada, G. Rondelli, and B. Vicentini, “Effect of different surface finishing and of hydroxyapatite coating on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution,” Biomaterials, vol.18, pp.783-787, 1997
[39].D.F. Williams and R. Roaf, Implants in Surgery, Chap.1, W. B. Saunders Co., Philadelphia, 1973
[40].洪敏雄,林峰輝,王盈錦, ”生醫陶瓷” 陶瓷技術手冊(下), 中華民國產業科技發展協進會, 1994
[41].Larry L. Hench, and June Wilson, An Introduction to Bioceramics, World Scientific Publishing Co. Pte. Ltd, Singapore, 1993
[42].L. L. Hench and E. C. Ethridge, Biomaterial, A cademic Press. Inc., 1982
[43].A.S. Posner, A. Perloff, and A.D. Diorio, “Refinement of the hydroxyapatite structure,” Acta Crystallogr., vol.11, pp.308-309, 1958
[44].Y. Fang, D.K. Agrawal, D.M. Roy, R. Roy, “Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering,” Materials Letters, vol.23, pp.147-151, April 1995
[45].Joseph D. Bronzino, The Biomedical Engineering Handbook, CRC Press, Florida, 1995
[46].John B. Wachtman, Mechanical Properties of Ceramics, A Wiley-Interscience Publication, United States of America, 1996
[47].Changsheng Liu, Yue Huang, Wei Shen, and Jinghua Cui, “Kinetics of hydroxyapatite precipitation at pH 10 to 11,” Biomaterials, vol.22, pp.301-306, April 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top