|
[1] E. Kinoshita, H. Kosako, and Y. Kojima, “General Division in the Symmetric Residue Number System,” IEEE Trans. Comput., C-22, pp.134-142, Feb. 1973. [2] D. Banerji, T. Cheung, and V. Ganesan, “A High-Speed Division Method in Residue Arithmetic,” in Proc. 5th IEEE Symp. Comput. Arithmetic, pp.158-164, 1981. [3] W. Chren Jr., “A New Residue Number Division Algorithm,” Computer Math. Appl., vol. 19, no. 7, pp.13-29, 1990. [4] N. Szabo and R. Tanaka, Residue Arithmetic and Its Applications to Computer Technology, McGraw Hill, New York, 1967. [5] D. Gamberger, “New Approach to Integer Division in Residue Number System,” in Proc. of 10th Symp. On Comput. Arith., pp.84-91, 1991. [6] Y. Kier, P. Cheney and M. Tannenbaum, “Division and Overflow Detection in Residue Number Systems,” IRE Trans. Electron. Comput., pp.501-507, 1962. [7] L. Lin, E. Leiss, and B. Mcinnis, “Division and Sign Detection Algorithm for Residue Number Systems,” Comput. Math. Appl., 10, pp.331-342, 1984. [8] M. Lu and J. S. Chiang, “A Novel Division Algorithm for the Residue Number System,” IEEE Transactions on Computer, vol. 41, no. 8, pp. 1026-1032, 1992. [9] A. A. Hiasat and H. S. Zohdy, “A High-Speed Division Algorithm for Residue Number System,” Proceedings-IEEE International Symposium on Circuits and Systems, part 3, pp.1996-1999, 1995. [10] M. Abdallah and A. Skavantzos, “New Multi-Moduli Residue and Quadratic Residue Systems for Large Dynamic Ranges,” IEEE Proceedings of ASILOMAR-29, pp.961-965, 1996. [11] F. Barsi and M. C. Pinotti, “Fast Base Extension and Precise Scaling in RNS for Look-Up table Implementations,” IEEE Trans. Signal Processing, Vol. 43, No. 10, pp.2427-2430, October 1995. [12] P. F. Dietz, I. I. Macarie, and J. I. Seiferas, “Bits and Relative Order from Residues, Space Efficiently,” Information Processing Letters, Vol. 50, No. 3, pp.123-127, May 1994. [13] A. Garcia and A. Lloris, “A Look-Up Scheme for Scaling in the RNS,” IEEE Trans. Computer, Vol. 48, No. 7, pp.748-751, July 1999. [14] M. A. Hitz and E. Kaltofen, “Integer Division in Residue Number Systems,” IEEE Trans. Computer, Vol. 44, No. 8, pp.983-989, August 1995. [15] D. E. Knuth, The Art of Computer Programming, Vol. 2, second ed. Addison-Wesley, 1981. [16] F. J. Taylor, “Residue Arithmetic: A Tutorial with Examples,” IEEE Trans. Computer, pp.50-62, May 1984. [17] J. Schwemmlein, K. C. Posch, and R. Posch, “RNS-Modulo Reduction Upon a Restricted Base Value Set and its Application to RSA Cryptography,” Computers and Security, Vol. 17, No. 7, pp.637-650, 1998. [18] A. P. Shenoy and R. Kumaresan, “Fast Base Extension Using a Redundant Modulus in RNS,” IEEE Trans. Computer, Vol. 38, No. 2, pp.292-296, 1989. [19] Y. Wang and M. Abd-El-Barr, “A New Algorithm for RNS Decoding,” IEEE Trans. Circuits and systems —I: Fundamental Theory and Applications, Vol. 43, No. 12, pp.998-1001, 1996. [20] H. Wu and M. A. Hasan, “Closed-Form Expression for the Average Weight of Signed-Digit Representations,” IEEE Trans. Computer, Vol. 48, No. 8, pp.848-851, 1999. [21] J. C. Bajard, L. S. Didier, and P. Kornerup, “An RNS Montgomery Modular Multiplication Algorithm,” IEEE Trans. Comput., vol. 47, no. 7, pp.766-776, 1998. [22] W. L. Freking and K. K. Parhi, “Montgomery Modular Multiplication and Exponentiation in the Residue Number System,” in Proc. of the 33rd Asilomar Conference on Signals, Systems, and Computers, 1999. [23] G. I. Davida and B. Litow, “Fast Parallel Arithmetic Via Modular Representation,” SIAM J. Comput., Vol. 20, No. 4, pp.756-765, 1991. [24] A. Skavantzos and M. Abdallah, “Implementation Issues of the Two-Level Residue Number System with Pairs of Conjugate Moduli.” IEEE Transactions on Siginal Processing, Vol. 47, No. 3, March 1999. [25] N. Burgess, “Efficient RNS-to-Binary Conversion Using High-Radix SRT Division,” IEE Proc-Comput. Digit. Tech., Vol. 148, No. 1, pp.49-52, January 2001. [26] N. Burgess and T. E. Williams, “Choices of Operand Truncation in the SRT Division Algorithm,” IEEE Trans., C-44, No. 7, pp.993-938, 1995. [27] H. L. Garner, “The Residue Number System,” IRE Trans. Electronic Computers, Vol. EC-8, pp.140-147, 1959. [28] G. Dimauro, S.Impedovo, and G. Pirlo, “A New Technique for Fast Number Comparison in Residue Number System,” IEEE Trans. Comput., Vol. 42, No. 5, pp.608-612, 1993. [29] T. V. Vu, “Efficient Implementations of Chinese Remainder Theorem for Sign Detection and Residue Decoding,” IEEE Trans. Comput., Vol. C-34, No. 7, pp.646-651, July 1985. [30] D. Gallaher, F. E. Petry, and P. Srinivasan, “The Digit Parallel Method for Fast RNS to Weight Number System Conversion for Specific Moduli ,” IEEE Trans on Circuits and Systems, Analog and Signal Processing, Vol. 44, No. 1, pp.53-57, 1997. [31] L. L. Yang and L. Hanzo, “Residue Number System Arithmetic Assisted M-Ary Modulation,” IEEE Communications Letters, Vol. 3, No. 2, pp.28-30, February 1999.
|