[1] S. Mallat, ”A Theory for Multiresolution Signal Decomposition : The Wavelet Representation,” IEEE Trans. On Pattern Analysis and Machine Intell, vol , 11 , No.7, pp.674-693 , July 1989.
[2] Hiyama , S. and Kobayashi, M. ,(1998) , “Wavelet-based multiresolution display of coastline data “ pp . 1-11
[3]王鴻傑, “小波基底函數產生系統之設計與實作, “國立中正大學化學工程研究所 , 八十九學年度碩士論文.[4]鍾瑛靜, “小波理論在質點運動影像之評估, ”國立台北科技大學電機整合研究所 , 九十學年度碩士論文[5]劉震昌, “小波轉換應用於二維碎形布朗運動估測, 抗雜訊之影像壓縮, 及影像序列上物件追蹤,”國立台灣大學電機工程研究所, 九十學年博士論文[6]繆邵剛, “數位影像處理,活用-Matlab,” 全華科技圖書股份有限公司, 88年11月第二版
[7]李慶建, “衛星影像融合技術之比較與分析,” 國防大學中正理工學院電子工程研究所, 八十九學年碩士論文[8]洪志偉, “基於類神經模糊系統及小波轉換於數位灰階影像浮水印技術設計,” 國立中正大學通訊工程研究所, 八十九學年碩士論文[9]許巍嚴,” 以多解析小波轉換為基礎的顯微影像接合系統,”國立成功大學資訊工程研究所, 八十九學年碩士論文[10] 許育嘉, “小波神經網路於土木工程之應用,”國立交通大學土木工程系, 八十九學年碩士論文[11] A. Said and W. A. Peariman , “An image multiresolution representation for lossless and lossy compression, “ IEEE Trans. Image Processing, vol.5, pp. 1303-1310, Sept. 1996.
[12] M. J. Gormish, E. L. Schwartz, A. F. Keith, M. P. Boliek, and A. Zandi, “Lossless and nearly lossless compression of high-quality images,” Proc. SPIE, vol. 3025, pp. 62-70, Mar. 1997.
[13] A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek, “CREW : Compression with reversible embedded wavelets,” in Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 1995,pp.212-221.
[14] A. R. Calderbank, I. Daubenchies, W. Sweldens, and B.-L. Yeo, ”Wavelet transforms that map integers to integers,” Appl. Comput. Harmon. Anal., vol. 5, pp. 332-369, July 1998.
[15] D. Le Gall and A. Tabatabai, ”Sub-band coding of digital images using symmetric short kemel filters and arithmetic coding technologies,” in Proc. IEEE Int, Conf. Acoustics, Speech, Signal Processing, vol. 2, New York, Apr. 1998, pp. 761-764.
[16] J. D. Villasenor, B. Beizer, and J. Liao, “Wavelet filter evaluation for image compression,” IEEE Trans. Image Processing, vol. 4, pp. 1053-1060, Aug. 1995.
[17] G, Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley, MA: Wellesley-Gambridge Press, 1996.
[18] M. D. Adams and F. Kossentini, “Low-complexity reversible integer-to-integer wavelet transforms for image coding,” in Proc. IEEE Pacific Rim Conf. Communications, Computers, Signal Processing, Victoria, B.C., Canda, Aug. 1999, pp. 177-180.
[19] M. D. Adams, I, Kharitonenko, and F. Kossentini, Report on core experiment CodEff4: Performance evaluation of several reversible integer-to-integer wavelet transforms in the jpeg-2000 verification model (section 2.1), ISO/IEC JCT I/SC 29/WG I N1015 ,Oct. 1998.
[20] M. Antonono, M. barlaud, P. Mathieu, and I. Daubchies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, vol. 1, no, 2, pp. 205-220, Apr. 1992.
[21] Adam, M. D. ; Kossentni, F. ”Reversible Integer-to-Integer Wavelet Transforms for Image Compression :Performance Evaluation and Analysis,” IEEE Transactions on, vol 9 Issue; 6 ,June 2000 page 1010-1024
[22] I.Daubenchies,”Orthogonal Base of Compactly supported Wavelets, ” Comn . Pure Apple. Math ,vol.41, pp.906-996,1988
[23] A. Cohen, I. Daubenchies, and J.C. Feauveau ,” Biorthogonal based of compactly Supported wavelets,”Commun Pure Appl Math,pp 485-5001992.
[24] G.Knowles, “VLSI architecture for the discrete wavelet transform” Elect-ronics Letters, vol. 26,pp.1184-1185, 1998 .
[25] K.K Parhi and T. Nishitani. “VLSI architecture for discrete wavelet transform, ” IEEE Trans. VLSI Systems, vol. 1.no.2.
pp ,191-202 ,1993.
[26] Bell-labs ,”Wim sweldens’ wavelet cascade, “
http://cm.bell-labs.com/cm/ms/who/wim/cascade
[27] Colella, D . and Heil, C., (1994) , “Characterizations of scaling functions: contnous solutions, “ SIAM J. Matrix Anal. Appl., vol. 15, no. 2, pp. 496-518
[28] 秦前清、楊宗凱,” 實用小波分析 ”,西安市,西安電子科技大學,1994
[29] 蘇由敏、黃奇,”有限區間內正交多重小波函數之建構與應用”,嘉義,中正大學,民87
[30] 李建忠, ”二維離散週期性小波轉換之高效率非分離式超大型積體電路架構,”義守大學電子工程研究所,88學年度碩士論文
[31] Unser , M .(1998) , “Shift-orthogonal wavelet bases, “ IEEE Trans. On signal processing, vol. 46, no. 7 , pp. 1827-1836
[32] Vetterli, M. amd Kovaéeviæ, J., (1995) , “Wavelets and subband coding,” press, Ohio U.S.A
[33] A. Skodras, C. Christopoulos, and T. Ebrahimi, “ The JPEG 2000 still image compression standard,” IEEE Signal Processing Magazine, pp. 36-58, Sep. 2001.
[34] W. Sweldens, “The Lifting scheme : A custom-design construction of biorthogonal wavelets,“ Appl. Comput. Harmon. Anal. pp. 188-200, 1996.
[35] Jer Min Jou, Yeu-Horng Shiau, Chin-Chi Liu, “Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme,” The 2001 IEEE International Symposium on , Volume: 2 , 2001, pp.529 -532 vol. 2
[36] I. Daubenchies and W. Sweldens, “Fac- toring Wavelet Transform into Lifting steps, “tech. Rep, Bell Laboratories,1996.
[37] K. C. Hung, Y. S. Hung, and Y. J. Huang, “A non-separable VLSI architecture for 2D discrete periodized wavelet transform,” IEEE Trans. on VLSI systems, vol. 9, no. 5, pp.565-576, Oct. 2001.
[38] Wei-Hsin Chang, Yew-San Lee, Wen-Shiaw Peng, Chen-Yi Lee “A line- Based, Memory Efficient and Programmable Architecture for 2D DWT using Lifting Scheme,” circuit and system, ISCAS 2001 IEEE International Symposium on, vol;4, pp. 330-333, 2001.
[39] Camille Diou, Lionel TORRES, Michel ROBERT,Gilles SASSA TELLI ,”Silicon Integration of Recursive Architecture for the 2D Wavelet Transform”.2002