跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/19 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林億城
論文名稱:二維絕緣閘雙極性電晶體模擬與量測
論文名稱(外文):Two-Dimensional Simulation and Measurement of IGBT
指導教授:黃榮生
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:絕緣閘雙極性電晶體二維解析解
外文關鍵詞:IGBT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:934
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:0
絕緣閘雙極性電晶體(IGBT)因其優異的特性,現今在大多數的電力電子電路上,已漸取代BJT而成為重要且常用的現代功率半導體元件。但其缺點就是在電流過大時,會引發寄生的閘流體導通,引起閘極失控(亦即閂鎖現象);另外當元件關閉時,在N-drift區及N-buffer區的大量多餘少數載子需經再結合回復至平衡狀態,引起曳尾的問題,而減緩了元件的切換速度。另一問題是IGBT至今尚無標準且準確的SPICE模型,以供電路設計使用。所以本篇論文的重點,首先將導出IGBT在室溫下之二維靜態及暫態之電流電壓的解析關係,以了解其物理意義,接著對IGBT元件內部的各項特性,依據物理特性及量測結果萃取其參數以建立精確的二維等效電路SPICE模型。最後實驗量測與SPICE模擬結果比對,證實本論文之2D SPICE模型十分精確。

Because of its excellent characteristics, the Insulated-Gate Bipolar Transistor (IGBT) has replaced BJT as an important modern power semiconductor device used in many power electronic circuits. However, when the turn-on current reduces some critical point, the parasitic thyristor will be triggered, and the gate control is lost (i.e. latch-up effects). When IGBT switches off, the large amount of excess minority carriers in the N-drift and N-buffer regions will recover to the equilibrium value through recombination, and this process causes so called tail-current problems, hence the turn-off speed of IGBT becomes very slow. Another problem of IGBT is that the standard and accurate SPICE models of IGBT for circuits design have not been well established. Thus in this thesis, a 2D analytical model for the steady-state and transient behaviors of IGBT are presented first to understand the insight physical significance. Then the physics-based 2D IGBT SPICE models are implemented with parameters extracted from analytical and measurement results. Finally, the SPICE simulation results are verified by comparison with experimental results and MEDICI simulation results, and the proposed 2D SPICE models in this thesis are proved to be very accurate.

第一章 序論.............................................1
1.1 研究動機.........................................1
1.2 IGBT之回顧.......................................2
1.3 本論文之目的與架構...............................9
第二章 IGBT之二維靜態及暫態解析解......................15
2.1 正向導通時少數載子分佈之二維解析解..............15
2.2 少數載子分佈常數解析解..........................19
2.3 IGBT正向導通特性................................22
2.4 閂鎖電流........................................24
2.5 關閉暫態分析....................................24
第三章 IGBT之2D SPICE Model............................32
3.1 靜態模型........................................32
3.2 大訊號模型......................................34
3.3 小訊號模型......................................35
第四章 結果與討論......................................44
4.1 IGBT電路板之製作................................44
4.2 量測方法........................................44
4.3 靜態特性........................................45
4.4 暫態特性........................................46
4.5 SPICE模擬與量測結果比對.........................46
第五章 結論............................................78

[1]B. J. Baliga, P. V. Gray, R. P. Love,” The Insulated Gate Rectifier (IGR): A New Power Switching Device”, IEDM Technical Digest, pp.264-265, DEC. 1982.
[2]A. R. Hefner, ”Analytical modeling of device-circuit interactions for the power insulated gate bipolar transistor(IGBT)”, IEEE Trans. Ind. Application, vol. 26, no.6, p. 995, 1990.
[3]A. R. Hefner, D. L. Blackburn, “An analytical model for the steady-state and transient characteristics of the power Insulated Gate Bipolar Transistor” Solid-State Electr.,vol.31, n.10,pp.1513-1532,1988.
[4]A. R. Hefner, ”An improved understanding for the transient operation of the power insulated gate bipolar transistor(IGBT)”,IEEE Trans. Ind.Power Electron.vol.5,p.459, 1990.
[5]C. S. Mitter et al.,” Insulated gate bipolar transistor(IGBT)modeling using IG-Spice”, IEEE Trans.Ind.Applicat.,vol.30,no.1,p.606,1996.
[6]K. Gauen, “Power MOSFET Variant Excels at High Load”, Electronic Design, pp.103-110, April 15, 1984.
[7]H. Dettmer, W. Fichtner, F. Bauer, and T. Stockmeier, “Punch-through IGBT with homogeneous N-base operation at 4kV line voltage”, in Proc. Int. Symp. Power Semicon. Devices ICs(ISPSD), pp.492-496, 1995.
[8]Databook, International Rectifier(IR), 1997.
[9]B. J. Baliga, “Analysis of insulated gate transistor turn-off characteristics”, IEEE Electron Device Lett., vol. EDL-6, pp. 74-77, Feb. 1985.
[10]B. J. Baliga, Modern Power Devices. New York:Wiley, pp. 353-387, 1987.
[11]D. S. Kuo, J. Y. Choi, D. Giandomenico, C.Hu, C. P. Sapp, K. A. Sassaman, and R. Bregar, “Modeling the turn-off characteristics of the bipolar-MOS transistor”, IEEE Electron Device Lett., vol. EDL-6, pp. 211-214, May 1985.
[12]D. S. Kuo, C. Hu, and S. P. Sapp, “An analytical model for the power bipolar-MOS transistor”, IEEE Electron., vol. 29, no. 12, pp. 1229-1237, 1986.
[13]Z. Shen and T.P. Chow, “An analytical IGBT model for power circuit simulation”, in Proc. 3rd Int. Symp. Power Semicond. Devices ICs ISPSD, pp. 79-82, 1991.
[14]Z. Shen and R. P. Chow, “Modeling and characterization of the insulated gate bipolar transistor(IGBT)for SPICE simulation”, in Proc. BN: Int. Symp. Power Semicond. Devices ICs, pp. 165-170, 1993.
[15]F. F. Protiwa, O. Apeldoorn, and N. Groos, “New IGBT model for PSPICE”, IEE Conf. Publ. Vol. 2, no. 377, pp. 226-231, 1993.
[16]A. F. Petrie and C. Hymowitz, “SPICE model accurately simulates IGBT parameters”, Power Conversion Intell. Motion, vol. 22, no. 1, pp. 40-51, Jan. 1996.
[17]K. Sheng, S. J. Finney, and B.W. Williams, “Fast and accurate IGBT model for PSPICE”, Electron. Lett., vol. 32, no. 25, pp. 2294-2295, Dec.5, 1996.
[18]O. Kvien, T. M. Undeland, and T. Rogne, “Models for simulation of diode(and IGBT)switchings which include the effect of the depletion layer”, in Proc.Conf. Rec.-IAS Annu. Meeting(IEEE Ind. Appl. Soc.), vol. 2, pp. 1190-1195, 1993.
[19]Hamar Yilmaz, et. al., “Recent Advances in Insulated Gate Bipolar Transistor Technology”, IEEE Electron Device, vol. 26 ED, no. 5, pp. 831-834, Sep. 1990.
[20]B. J. Baliga, “Modem Power Devices”, John Wiley and Sons, 1987.
[21]C. J. Chang , “The Study of IGBT Latch up Characteristics”, Thesis of NTHU EE Master 1995.
[22]H. W. Becke, C. F. Wheatley, Jr., “Power MOSFET with an Anode Region”, U. S. Patent No. 4364073, assigned to RCA corp., issued Dec. 14, 1982.
[23]Kuang Sheng,S .J .Finney, B. W. Williams ,“A new analytical IGBT model with improved electrical characteristics”, Power Electronics ,IEEE Trans. Ind. Application ,Volume:14 Issue: 1 , Page(s): 98 —107, Jan. 1999.
[24]B. J. Baliga, “Power Semiconductor Devices”, Copyright by PWS Publishing Company, Boston, 1996.
[25]T. Paul Chow, “Performance of 600-V n-Channel IGBT’s at Low Temperatures” , IEEE Electron Device Letters. ,vol.12,no.9 ,Page(s): 498 —499, 1991.
[26]Giuseppe Massobrio “Semiconductor Device Modeling With SPICE” by R. R. Donnelly&Sons Company, Singapore, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 鄭東瀛(1993):臺北市國民小學電腦應用教學實況。資訊與教育,38,51-55。
2. 鄭麗雪(1993):台北市資訊教育之現況與展望。資訊與教育,36,17-21。
3. 黃淑娟(1993):高雄市資訊教育之現況與展望。資訊與教育,36,22-24。
4. 何榮桂(1998):從教育部之資訊教育推廣策略看未來中小學資訊教育的願景。資訊與教育,68,2-13。
5. 黃韻寧(1993):臺灣省國民小學電腦應用教學實況。資訊與教育,38,46-48。
6. 陳裕隆(2000):電腦融入教學面臨的困難與挑戰。資訊與教育,77,29-35。
7. 黃超陽(2001):花蓮縣國民小學推行校務行政電腦化問題與對策。資訊與教育,82,63-74。
8. 何榮桂(1996):國中電腦課程標準的內涵與特色。資訊與教育,51,2-10。
9. 張國恩(2002):從學習科技的發展看資訊融入教學的內涵。北縣教育,41,16-25。
10. 溫嘉榮(1996):國民中學資訊教育現況及需求之研究。資訊與教育,51,17-26。
11. 李昆翰(1998):國小電腦教育探究芻議。國教月刊,44(9.10.),28-34。
12. 李安邦(2001):桃園縣國民小學資訊教育實施現況。2001資訊與教育雜誌特刊,77-94。
13. 吳權威、溫明正(1994):台北市國民小學資訊教育發展現況。國教月刊,40(9.10.),32-42。
14. 廖清森(1993):高雄市國民小學資訊教育實施現況。資訊與教育,38,49-50。
15. 廖癸欽(1999):從擴大內需方案看中小學的資訊教育。竹縣文教,19,27-31。