跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳光遠
研究生(外文):Kuang Yuan Chen
論文名稱:狀態縮減技術之編碼資料序列估測-基於EM演算法
論文名稱(外文):Coded data sequence estimation with reduced state technique- based on Expected-Maximization algorithm
指導教授:陳昭宏陳昭宏引用關係
指導教授(外文):Chao Hung Chen
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:58
中文關鍵詞:最大化相似資料序列估測期望值最大化演算法狀態減少技術碼際干擾
外文關鍵詞:MLSEEMreduced stateISI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:483
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
最大化相似資料序列估測已經是著名的接收器偵測資料序列的技術,部份原因是對衰退通道之容忍度高與抗干擾之能力,以及有較佳的位元錯誤率表現。
本篇論文以著名的期望值最大化(Expected-maximization簡稱EM)演算法進行資料序列與碼際干擾(intersymbol interference簡稱ISI)通道係數的聯合估測。
這裡我們使用狀態縮減(Reduced state)技術的方法與研究期望值最大化(EM)演算法在碼際干擾通道下,接收器編碼資料序列的估測性能。本論文以基於EM演算法及狀態縮減技術之編碼資料序列及通道聯合估測方法模擬分析位元錯誤率的表現。所提出之方法會較一般EM演算法在ISI通道上的聯合通道與資料序列估測可以有較好之性能表現。

MLSE (maximum likelihood sequence estimation) has been a well-known technique to estimate transmitted sequence for receiver; some reasons are that it has good performance of higher tolerance and anti-disturbance for fading channels, and it can achieve lower BER (bit-error-rates).
The paper presents a well-known method for using EM (expected-maximum) algorithm to precede a joint estimation of both transmitted sequence and ISI (intersymbol interference) channel coefficients problem.
Here we use technique with reduced state method and study EM algorithm performance of coded data sequence estimation over ISI channels. The paper that is based on EM algorithm and technique with reduced state method jointly estimates both coded data sequence and ISI channels, and we simulate performance of BER. The method we proposed performs better than joint sequence / channel estimation based on general EM algorithm over ISI channels.

章節目錄
中文摘要……………………………………………………………………0-1
英文摘要……………………………………………………………………0-2
第一章 簡介…………………………………………………………… 1-1
1.1文獻探討……………………………………………………………… 1-1
1.2 研究動機………………………………………………………………1-2
1.3 章節描述………………………………………………………………1-2
第二章 碼際干擾通道介紹…………………………………………… 2-1
2.1 記憶通道(成因、干擾、固定高斯) ……………………………… 2-1
2.1.1線性等化器原理…………………………………………………… 2-3
2.1.2等化器問題描述…………………………………………………… 2-6
2.2資料序列估測的方法………………………………………………… 2-7
第三章 Viterbi演算法…………………………………………………3-1
3.1迴旋編碼器和格子圖………………………………………………… 3-1
3.2迴旋碼的解碼………………………………………………………… 3-2
3.3 Viterbi解碼………………………………………………………… 3-5
第四章 期望-最大化演算法介紹……………………………………4-1
4.1離散通訊系統接收器模型…………………………………………… 4-1
4.2最大似然序列估測與期望-最大化演算法步驟………………………4-2
4.2.1等效通道狀態轉移圖……………………………………………… 4-2
4.2.2 期望-最大化演算法步驟………………………………………… 4-3
4.3在固定常數碼際干擾通道係數下估測資料序列…………………… 4-5
第五章碼際干擾通道通道編碼資料序列之估測…………………………5-1
5.1編碼資料序列估測之處理方法流程與期望-最大化演算法改 …… 5-1
5.1.1 期望-最大化演算法及迴旋碼解碼器………… …………………5-1
5.1.2具決策迴授路徑之期望-最大化演算法……………………………5-2
5.2系統模擬條件………………………………………………………… 5-2
5.3系統模擬分析………………………………………………………… 5-2
5.4 碼際干擾通道編碼資料序列估測之結論……………………………5-4
第六章 狀態減少技術之編碼資料序列估測-基於期望-最大化演算法.………………………………………………………………………………6-1
6.1如何減少Viterbi演算法的狀態數目…………………………………6-1
6.2 Viterbi演算法中通道狀態與迴旋碼解碼狀態之合併…………… 6-2
6.3狀態減少技術基於期望-最大化演算法………………………………6-3
6.4系統模擬分析與結論………………………………………………… 6-6
第七章 論文結果與討論…………………………………………………7-1
參考文獻……………………………………………………………………7-2
圖表目錄
第二章
圖2.1線性橫向濾波器…………………………………………………… 2-9
圖2.2等化器之系統方塊圖……………………………………………… 2-9
圖2.3等化器之系統方塊圖簡圖………………………………………… 2-10
圖2.4 (圖2.3)各點的離散訊號圖……………………………………… 2-10
第三章
圖3.1 (2,1,2)迴旋碼編碼器電路……………………………………… 3-7
圖3.2 狀態圖(圖中數字表示 )………………………………………… 3-7
圖3.3 格子圖………………………………………………………………3-7
圖3.4 Viterbi演算法示意圖…………………………………………… 3-8
圖3.5(a) Viterbi解碼的基本步驟………………………………………3-8
圖3.5(b) Viterbi解碼的基本步驟………………………………………3-9
圖3.5(c) Viterbi解碼的基本步驟………………………………………3-9
圖3.5(d) Viterbi解碼的基本步驟………………………………………3-9
圖3.5(e) Viterbi解碼的基本步驟………………………………………3-10
第四章
圖4.1 三條路徑無線通道模型方塊圖……………………………………4-7
圖4.2 等效通道狀態轉移圖………………………………………………4-7
圖4.3等效通道狀態轉移圖之格子圖表示……………………………… 4-8
圖4.4 EM演算法估測流程圖………………………………………………4-8
第五章
圖5.1 ISI通道編碼資料序列估測流程方塊圖………………………… 5-5
圖5.2 編碼資料序列估測之EM演算法流程圖……………………………5-5
圖5.3 輸出資料序列決策迴授之估測流程圖……………………………5-6
圖5.4 本論文所提決策迴授之EM演算法流程圖…………………………5-6
圖5.5 不同ISI通道脈衝響應EM演算法與Hard Decision (sign) 方法之BER比較圖………………………………………………………………… 5-7
圖5.6 固定的ISI通道、不同SNR條件下,傳輸資料長度對於各個演算法之比較圖………………………………………………………………………5-7
圖5.7 經過編碼與未經編碼的EM演算法與Hard Decision (sign)方法比較圖……………………………………………………………………………5-8
表5.1 g值估測之MSE(mean square error)比較……………… ………5-8
第六章
圖6.1 經過濾波的迴旋碼資料序列與以EM演算法偵測之系統方塊圖…6-9
圖6.2 迴旋碼狀態與通道狀態示意圖……………………………………6-9
表6.1 超級狀態示意表……………………………………………………6-9
表6.2 超級狀態轉移表……………………………………………………6-10
表6.3 超級狀態轉移情形與通道輸出表…………………………………6-11
圖6.3 超級狀態11之格子圖說明…………………………………………6-12
圖6.4 超級狀態20之格子圖說明…………………………………………6-12
圖6.5 超級狀態29之格子圖說明…………………………………………6-13
圖6.6 不同演算法對於SNR資料序列估測的BER表現圖(較輕ISI影響)6-13
圖6.7 SNR固定6dB時,不同演算法對於INR資料序列估測的BER表現圖
(較輕ISI影響)…………………………………………………………… 6-14
圖6.8 不同演算法對於SNR資料序列估測的BER表現圖(較大ISI影響 6-14
圖6.9 SNR固定6dB時,不同演算法對於INR資料序列估測的BER表現圖
(較大ISI影響)…………………………………………………………… 6-15
圖6.10 傳輸資料序列位元長度對於演算法的 BER比較圖…………… 6-15
表6.4 狀態數目比較表……………….……………… …………………6-16

[1]. G. D. Forney, “The viterbi algorithm,” Proc. of the IEEE, vol. 61, pp.268-278, Mar 1973.
[2]. John G. Proakis, Masoud Salehi, “Contemporary Communication Systems Using MATLAB(r),” 1st Ed. No. 5, 1999.
[3]. M. Ghosh, C.L. Weber, “Maximum-likelihood blind equalization, ”Optical Engineering, vol. 31, pp.1224-1228, June 1992.
[4]. Richard Perry, W. Andrew Berger and Kevin Bukley, “EM algorithm for sequence estimation over random ISI channels,” in proc. 1999. Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 295 —299.
[5]. Richard Perry, W. Andrew Berger and Kevin Bukley, “EM algorithm for sequence estimation over Gauss-Markov ISI channels,” in proc.2000 IEEE International Conference on Communications, ICC 2000, vol. 1, 2000, pp.16 —20.
[6]. Murat Erkurt and John G. Proakis, “Joint data detection and channel estimation for rapidly fading channels,” in Proc. 1992 IEEE Global Telecommunications Conference. Communication for Global Users, GLOBECOM'92, vol.2, 1992, pp. 910 —914.
[7]. Costas N Georghiades and Donald L. Snyder, “The expectation-maximization algorithm for symbol unsynchronized sequence detection,” IEEE Trans. Commun., vol. 39, Issue: 1, Jan. 1991, pp. 54 —61.
[8]. DR Bernard Sklar, Digital communications fundamentals & applications, 2-rd ed. Prentice Hall International, 2000.
[9]. Zhong ling Li, “CDMA wireless communication systems with FEC,” in Proc. 1992 'Communications on the Move' ICCS/ISITA '92. , vol. 1, Singapore, 1990 pp. 319—323.
[10]. Frank, C.D.; Pursley, M.B.” Performance of convolutional codes over Frequency-selective fading channels,” Proceedings. 1991 IEEE International Symposium on (Cat. No.91CH3003-1), 1991, pp. 47-47.
[11]. Ryan, W.E.; Ghrayeb, A.” Precoder design for concatenating convolutional codes with intersymbol interference channels,” Wireless Communications and Networking Confernce, 2000. WCNC 2000, IEEE, vol.3, 2000, pp: 1013 —1018.
[12]. Duel-Hallen, A.; Heegard, C. ” Delayed decision-feedback sequence estimation,” Communications, IEEE Transactions on, Vol. 37, Issue: 5, May 1989, pp. 428—436.
[13]. Singh, M.; Wassell, I.J.” Effective channel coding of serially concatenated encoders and CPM over AWGN and Rician channels,” MILCOM 2000. 21st Century Military Communications Conference Proceedings , vol.1, 2000, pp.402 —406.
[14]. Chan, F.; Haccoun, D.” Adaptive Viterbi decoding of convolutional codes over memoryless channels,” Communications, IEEE Transactions on, vol.45, Issue: 11, Nov. 1997 pp. 1389 —1400.
[15]. Xiong, F. ” Sequential sequence estimation for ISI channels with convolutionally coded input sequence,” Comm., 1992. ICC '92, Conference record, SUPERCOMM/ICC '92, Discovering a New World of Communications., IEEE International Conference on, vol.3, 1992 pp. 1534 —1538.
[16]. Katz, E.; Stuber, G. L. “Sequential sequence estimation for trellis-coded modulation on multipath fading ISI channels,” Comm., IEEE Transactions on, vol.43, Issue: 12, Dec. 1995, pp. 2882.
[17]. Duel-Hallen, A.; Heegard, C. ” Delayed decision-feedback sequence estimation,” Communications, IEEE Transactions on, Vol. 37, Issue: 5, May 1989, pp. 428—436.
[18]. Qingyuan Dai and Shwedyk, E. ” Sequential sequence estimation of bandlimited signals over a frequency selective Rayleigh channel with a convolutional coded input sequence,” Personal, Indoor and Mobile Radio Commun. , 1992. Proceedings, PIMRC '92., Third IEEE International Symposium on , 1992, pp. 688 —692.
[19]. Martin Tomlinson and M. N. Ali Abu-Rgheff, “The TAR decoder — a bandpass viterbi/FFT decoder for convolutional encoded spread-spectrum signals,” IEEE Trans. Commun. vol. 44, no.11, Nov. 1996.
[20]. Nambirajan Seshadri, Carl-Erik W. Sundberg, “List viterbi decoding algorithms with applications,” IEEE Trans. Commun. vol. 42, no. 2/3/4, Feb./Mar./Apr. 1994, pp. 313-323.
[21]. Eyuboglu, M.V. and Qureshi, S.U.H. ” Reduced-state sequence estimation for coded modulation of intersymbol interference channels,” Selected Areas in Commun., IEEE Journal on , Vol. 7 Issue: 6 , Aug. 1989, pp. 989 —995.
[22]. Maurizio Magarini, Arnaldo Spalvier, and Guido Tartara, “Improving error probability of the prefiltered viterbi equalizer,” IEEE Commun. Letters, vol. 4, no. 4, Apr., 2000, pp. 137-139.
[23]. Saeed a. Aldosari, Saleh A. Alshebeili, and Abdulhameed m. Al-Sanie, ”A new MSE approach for combined linear-viterbi equalizers,” in Proc. 2000 IEEE 51st Vehicular Technology Conference, VTC 2000-Spring Tokyo. Vol. 3, 2000, pp. 1707-1711.
[24]. Gary D. Brushe, Vikram Krishnamurthy, and Langford B. White, “A reduced-complexity online state sequence and parameter estimator for superimposed convolutional coded signals,” IEEE Trans. Commun. vol. 45, no. 12, Dec. 1997, pp. 1565-1574.
[25]. Modestino, J.W.” Reduced-Complexity Iterative Maximum-Likelihood Sequence Estimation on Channels with Memory,” Information Theory, 1993. Proc. IEEE International Symp. on, 1993, pp. 422 —422.
[26]. Eyuboglu, M.V. and Qureshi, S.U.H. ” Reduced-state sequence estimation for coded modulation of intersymbol interference channels,” Selected Areas in Commun., IEEE Journal on , Vol. 7 Issue: 6 , Aug. 1989, pp. 989 —995.
[27]. Eyuboglu, M.V., Qureshi, S.U. and Chen, M.P. ” Reduced-state sequence estimation for trellis-coded modulation on intersymbol interference channels,” Global Telecommunications Conference, 1988, and Exhibition. 'Communications for the Information Age.' Conference Record, GLOBECOM '88, IEEE, vol.2, 1988, pp.878 —882.
[28]. Douglas N. Rowitch and Laurence B. Milstein, “Convolutionally coded multicarrier DS-CDMA systems in multipath fading channel — part I:performance analysis,” IEEE Trans. Commun. Vol. 47, no. 10, Oct. 1999, pp. 1570-1582.
[29]. Douglas N. Rowitch and Laurence B. Milstein, “Convolutionally coded multicarrier DS-CDMA systems in multipath fading channel — part II:narrow-band interference suppression,” IEEE Trans. Commun. Vol. 47, no. 10, Oct. 1999, pp. 1570-1582.
[30]. D. N. Rowitch and L. B. Milstein, “Coded multicarrier code division multiple access,” in Proc. 1995 Int. Symp. Information theory, Whistler, BC, Canada, Sept. 1995, pp.23.
[31]. Todd K. Moon, “The expectation-maximization algorithm,” IEEE Signal Processing Magazine, Nov. 1996, pp. 47-60.
[32]. Todd K. Moon, “The expectation-maximization algorithm,” IEEE Signal Processing Magazine, Nov. 1996, pp. 47-60.
[33]. Andrew Logothetis and Vikram Krishnamurthy, “expectation maximization algorithms for MAP estimation of jump Markov linear systems,” IEEE Trans. Signal Processing, vol. 47, no. 8, Aug. 1999, pp. 2139-2156.
[34]. A. P. Dempster, N. M. Laird, and D. B. Rubin, ”Maximum likelihood from incomplete data via the EM algorithm,” J. Roy. Stal. Soc., vol. 39,no. 1, pp. 1-38, 1997.
[35]. William Turin, “MAP decoding using the EM algorithm,” in proc. 1999 IEEE 49th Vehicular Technology Conference, vol. 3 , 1999, pp. 1866 —1870.
[36]. Mohanmmad Javad Omidi, P. Glenn Gulak and S. Pasupathy, “parallel structures for joint channel estimation and data detection over fading channels,” IEEE J. Selected Areas in Commun. Vol. 16, no. 9, Dec. 1998, pp. 1616-1629.
[37]. Jingdong Lin, Fuyun ling, and John G. Proakis, “Joint data and channel estimation for TDMA mobile channels,” in Proc. 1992 Third IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC '92, 1992, pp 235 —239.
[38]. Carmela Cozzo and Brian L. Hughes, “Joint channel estimation and data symbol detection in space-time,” in Proc. 2000 IEEE International Conference on Communications,. ICC 2000, vol.1, 2000, pp. 287 —291.
[39]. M. Javad Omidi, S. Pasupathy, and P.g. Gulak, “Joint data and kalman estimation of fading channel using a generalized viterbi algorithm,” in Proc. 1996 IEEE International Conference on Communications, ICC '96, 1996, vol. 2, 1996, pp. 1198-1203.
[40]. 張大中”數據與數位通訊系統原理”,全華,85.
[41]. 陳克任”現代類比暨數位通訊-數位篇”,儒林,1988.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top