(3.232.129.123) 您好!臺灣時間:2021/03/06 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張賜洲
研究生(外文):Szu-Chou Chang
論文名稱:光柵結構光波導元件能量傳輸與反射之分析
論文名稱(外文):Analysis of Transmission and Reflection Characteristics for Corrugated Waveguides
指導教授:孫迺翔孫迺翔引用關係
指導教授(外文):Nai-Hsiang Sun
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:121
中文關鍵詞:光柵
外文關鍵詞:grating
相關次數:
  • 被引用被引用:3
  • 點閱點閱:367
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討在光柵介電質波導結構中,光波傳遞遭遇不連續界面所產生的反射、傳輸與輻射之情形。我們分為順向耦合與逆向耦合兩方面討論:在順向耦合方面,我們針對光柵輔助順向耦合器(GADC)的能量傳輸做分析;而在逆向耦合方面,我們則在First Bragg與Second Bragg Condition的能量反射、傳輸與輻射做了分析。在分析方法的選擇上,我們選擇Floquet-Bloch理論作為分析光柵區的方法,且以Mahmoud-Beal’s方法分析波導間的不連續界面。結果顯示,在順向耦合分析方面,能量遭遇不連續界面所產生的反射能量非常微小,而在逆向耦合分析方面,因順向波與逆向波的耦合反應,在First Bragg與Second Bragg均有明顯的反射能量,且其反射能量隨光柵高度與光柵區長度的增加而增加,而在Second Bragg時,能量在光柵區中還會有輻射損失的產生,而且輻射損失之值遠大於耦合反應之值。

In this thesis we discuss the properties of the transmission, reflection, and radiation loss when the light propagates in the periodic waveguide structure. Both the co-directional coupling and contra-directional coupling are analyzed. For the co-directional coupling, the transmission and reflection power are studied; whereas for the contra-directional coupling, we present the transmission, the reflection, and the radiation loss in the first-Bragg and the second-Bragg conditions. We use the Floquet-Bloch theory to analyze the grating structure and use the Mahmoud-Beal’s method to calculate the properties of the discontinuity. The results of the co-directional coupling show that the reflection power is very small at the interface between the dielectric waveguide and the periodic structure; whereas most of the power transmit through the discontinuous interface. For the contra-directional coupling, a significant reflection power occurs in the first-Bragg. Also, the reflection power increases with the increased tooth heights and the length of the grating region. Moreover, in the second-Bragg, the radiation loss is larger than the reflection in the attenuation.

中文摘要………………………………………………………………i
英文摘要………………………………………………………………ii
誌謝……………………………………………………………………iii
目錄……………………………………………………………………iv
圖目錄…………………………………………………………………vi
表目錄…………………………………………………………………ix
第一章 緒論…………………………………………………………1
1-1 前言………………………………………………………………1
1-2 研究動機與背景…………………………………………………2
1-3 論文架構概述……………………………………………………7
第二章 順向耦合模式理論…………………………………………8
2-1 雙層結構單一不連續界面介電質波導之分析…………………8
2-1-1 單一模態重疊積分求解………………………………………8
2-1-2 二模態重疊積分求解…………………………………………11
2-1-3 多模態重疊積分求解…………………………………………13
2-2 三層結構雙層不連續界面光柵介電質波導之分析……………16
2-2-1 單一模態重疊積分求解………………………………………16
2-2-2 二模態重疊積分求解…………………………………………19
2-2-3 多模態重疊積分求解…………………………………………22
第三章 逆向耦合模式理論…………………………………………26
3-1 逆向耦合光柵介電質波導之分析………………………………26
3-2 逆向耦合之重疊積分……………………………………………32
3-3 傳輸能量、反射能量……………………………………………34
3-4 輻射損失…………………………………………………………37
第四章 順向耦合模式理論分析光柵介電質波導…………………43
4-1 單一不連續界面光柵介電質波導………………………………43
4-2 二個不連續界面光柵介電質波導………………………………54
第五章 逆向耦合模式理論分析光柵介電質波導…………………79
5-1 在First Bragg 傳播能量與反射能量之分析…………………79
5-2 在Second Bragg 傳播能量與反射能量之分析……………… 92
第六章 結論…………………………………………………………116
參考文獻………………………………………………………………118

[1] D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part I : Shnchronous couplers,” J. Lightwave Technol., vol. LT-5, pp. 113-118, Jan. 1987.
[2] H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett., vol. 18, pp. 152-154, Feb. May 1971.
[3] M. Okamoto, K. Sato, H. Mawatari, F. Kano, K. Magari, Y. Kondo and Y. Itaya, “TM mode gain enhancement in GaInAs/InP Lasers with tensile strained-layer superlattice,” IEEE J. of Quantum Electron., vol. QE-27, no. 6, pp. 1463-1469, June 1991.
[4] H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proceedings of IEEE, vol. 79, no. 10, pp. 1505-1518, Oct. 1991.
[5] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J., vol. 48, pp. 2909-2947, Nov. 1969.
[6] D. L. Bisbee, “Measurements of loss due to offsets and end separations of optical fibers,” Bell Syst. Tech. J., vol. 50, no. 10, p. 3159, Dec. 1971.
[7] L. G. Cohen, “Power coupling from GaAs injection lasers into optical fibers,” Bell Syst. Tech. J., vol. 51, no. 3, p. 573, Mar. 1972.
[8] J.S. Cook, W. L. Mammel, and R. J. Grow,“Effect of misalignments on coupling efficiency of single-mode optical fiber butt joints,” Bell syst. Tech. J., vol. 52, no. 8, p. 1439, Oct. 1973.
[9] T. Sekizawa, “Components for optical-fiber transmission,” J. Inst. Electron. Commun. Eng. Japan, vol. 59, no. 7, p. 728, July 1976.
[10] T. C. Chu and A. R. McCormick, “Measurements of loss due to offset, end separation, and angular misalignment in graded index fibers excited by an incoherent source,” Bell Syst. Tech. J., vol. 57, no. 3, p. 595, Mar. 1978.
[11] B. Rulf, “Discontinuity radiation in surface waveguides,”J. Opt. Soc. Amer., vol. 65, no. 1l, p. 1248, Nov. 1975.
[12] G.H. Brooke and M.M. Z. Kharadly, “Step discontinuities on dielectric waveguides,”Electron. Lett., vol. 12, no. 18, p. 473, Sept.1976.
[13] Katsumi Morishita, Sei-ichi Inagaki and Nobuaki Kumagai, “Analysis of discontinuities in dielectric waveguides by means of the least squares boundary residual method,” IEEE Trans. Microwave Theory Tech., vol. MTT-27, no.4, p. 310, April. 1979.
[14] S. F. Mahmoud and J. C. Beal, “Scattering of surface waves at a dielectric discontinuity on a planar waveguide,”IEEE Trans. Microwave Theory Tech., vol. MTT-23, p. 193, Feb. 1975.
[15] D. Marcuse, “Radiation losses of tapered dielectric slab wave-guides,”Bell Syst. Tech. J., vol. 49, no. 2, p. 273, Feb. 1970.
[16] Qing-Huo Liu, and Weng Cho Chew, “Analysis of discontinuities in planar dielectric waveguides:An Eigenmode Propagation Method,”IEEE Trans. Microwave Theory Tech., vol. 39, No.3, p.422, Mar.1991.
[17] G. R. Hadley, “Wide-angle beam propagation using pade approximant operators,” Opt. Lett., vol 17, pp 1426-1428, 1992.
[18] G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt Lett., vol 17, pp. 1743-1745, 1992.
[19] Yih-Peng Chiou and Hung-chun Chang, “Analysis of optical waveguide discontinuities using the pade approximants,”IEEE Photonics technology letters, Vol.9, No. 7, July 1997.
[20] D. Marcuse, “Directional couplers made of nonidentical asymmetrical slabs. Part II: Grating- assisted couplers,” IEEE J. of Lightwave Tech., vol. LT-5, pp. 268-273, Feb. 1987.
[21] H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” IEEE J.of Lightwave Tech., vol. LT-5, pp. 16-23, Jan. 1987.
[22] W. P. Huang and H. A. Haus, “Power exchange in grating-assisted couplers,” IEEE J. of Lightwave Tech., vol. LT-7, pp. 920-924, June 1989.
[23] W. P. Huang and J. W. Y. Lit, “Nonorthogonal coupled-mode theory of grating-assisted codirectional couplers,” IEEE J. of Lightwave Tech., vol. LT-9, pp. 845-852, July 1991.
[24] W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A, vol. 11, pp. 963-983, March 1994.
[25] Masayiki Matsumoto, “Analysis of the blazing effect in second-order gratings,” IEEE J. of Quanyum Electron., vol. 28, no. 10, pp. 2016, Oct. 1992.
[26] B. E. Little, “A variational coupled-mode theory including radiation loss for grating-assisted couplers,” J. Lightwave Technol., vol. 14, pp. 188-195, Feb. 1996.
[27] J. K. Butler, N. H. Sun, G. A. Evans, L. Pang, and P. Congdon, “Grating-assisted coupling of light between semiconductor and glass waveguides,” J. Lightwave Technol., vol. 16, pp. 1038-1048, 1998.
[28] S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 123-133, Jan. 1975.
[29] V. M. N. Passaro, “Optimal design of grating-assisted directional couplers,” J. Lightwave Technol., vol. 18, no. 7, pp. 973-984, July 2000.
[30] Nai-Hsiang Sun, Jerome K. Butler, Gary A. Evans, Lily Pang, and Phil Congdon, “Analysis of Grating-Assisted Directional Couplers Using the Floquet-Bloch Theory,” IEEE J. of Lightwave Tech., vol.15, no. 12, pp. 2301, Dec. 1997.
[31] G. Hadjicostas, J. K. Butler, G. A. Evans, N. W. Carlson, and R. Amantea, “A numerical investigation of wave interactions in dielectric waveguides with periodic surface corrugations,” IEEE J. Quantum Electron., vol. 26, pp. 893-902, May 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔