跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾志華
研究生(外文):Tseng Chih Hua
論文名稱:Squamocin對大白鼠神經膠質瘤C6細胞之毒殺作用及細胞凋亡相關機制之研究
論文名稱(外文):The cytotoxic effect and apoptotic mechanism of Squamocin in rat glioma C6 cell.
指導教授:邱慧芬邱慧芬引用關係
指導教授(外文):Chiu Hui Fen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:天然藥物研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:71
中文關鍵詞:細胞凋亡大白鼠神經膠質瘤細胞番荔枝科乙醯生合成物腫瘤壞死因子細胞毒性流式細胞儀細胞週期西方墨點法
外文關鍵詞:apoptosisrat glioma C6 cellAnnonaeous acetogenintumor necrosis factorcytotoxicityflow cytometercell cyclewestern blot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文以研究台灣產番荔枝科植物所分離出來的乙醯生合成物 (Annonaceous acetogenin) Squamocin之藥理活性。除了以小白鼠之毒性實驗探討其半致死劑量 (LD50),更進一步以大白鼠神經膠質瘤細胞 (rat glioma C6 cell)研究其抗癌活性及其誘發細胞凋亡(apoptosis)之相關機轉。
以背部皮下方式將Squamocin 之不同劑量(0.1-2.0 mg/Kg)注入小白鼠(20-25 g)之體內,觀察小白鼠死亡情形,發現其死亡率與劑量成正相關之反應,且Squamocin 之半致死劑量(LD50)約為0.375 mg/kg。
在細胞毒殺方面,將C6細胞以不同濃度(10-4 —1.0μM)之Squamocin 作用72小時後,以Methylene blue assay的方法測定。發現其與劑量成正相關之反應,其50 % 之抑制生長濃度(IC50)約為51.2 nM,且細胞以藥物處理後其型態均有萎縮、產生空泡之現象。
C6 細胞經加入Squamocin 不同濃度(1或100 nM)作用24、48及72小時後,以流式細胞儀分析其細胞週期的變化,發現其呈現出停滯於G2/M期的現象,而且隨時間之增加,細胞變化之百分比更為明顯。
C6 細胞在加入不同濃度(1或100 nM)之Squamocin 24、48及72小時後,經 由原位DNA片段測定法(TUNEL)分析其DNA片段後發現隨著Squamocin 之劑量與反應時間的增加,它所造成之C6細胞凋亡數目也隨之增加。
而目前對有關引起細胞凋亡之途徑,被認為可經由腫瘤壞死因子(TNF-α)與腫瘤壞死因子之接受體(TNF-R1)結合後,而進行機轉中腫瘤壞死因子之接受體相關死亡區段(TRADD)之活化,引起一連串瀑布式反應進而導致細胞凋亡作用。
以流式細胞儀分析發現Squamocin (1或100 nM)作用24、48及72小時後可增加C6細胞之細胞膜上TNF-R1的表現及細胞所釋放之TNF-α。經由西方點漬法分析,亦發現以Squamocin (1或100 nM)作用24小時後,細胞內Bcl-2蛋白質的表現有降低之現象。
本研究之結果發現,Squamocin 的細胞毒性主要是經由細胞凋亡之作用。Squamocin 會使C6細胞之細胞週期停滯在G2/M期,並使細胞內之DNA斷裂百分比、TNF-α及TNF-R1 之表現增加,且降低細胞內Bcl-2蛋白質之表現。
Squamocin is an active acetogenin purified from Formosa Annonaceous plants. The aim of this study was to investigate cytotoxic effects and apoptotic mechanisms of squamocin in rat glioma C6 cells.
Mice (20-25 g) were administrated back subcutaneous with different dosage (0.1—2 mg/Kg) of squamocin. Our results have indicated that the lethal dose 50 % (LD50) of squamocin is approximated 0.375 mg/Kg.
Squamocin possess potent antitumor effect in rat glioma C6 cells. The cytotoxic IC50 of squamocin in C6 cells is 51.2 nM, which is more potent than other commercial anti-neoplastic agents. In addition, squamocin also induced the morphological changes of C6 cell including cells shrunken and membrane blebbing phenomenon.
We hypothesized that the cytotoxic effect of squamocin may be due to the apoptotic signal modulation. It was confirmed by a flow cytometric analysis, treatment squamocin with (1 & 100 nM) for different time (24, 48 or 72 hours) caused an accumulation in the G2/M phase of the cell cycle.
In situ detection of fragmented DNA (TUNEL assay) of C6 cells, squamocin (1 & 100 nM) dose- and time-dependents increased the percentage of DNA fragmentation.
Most apoptotic induction of TNF-α is mediated by TNF-R1 through interaction of its death domain protein (TRADD). Therefore, in TNF-α level and TNF-R1 expression determination by flow cytometry. Our results have demonstrated squamocin increase the TNF-α level and TNF-R1 expression in the C6 cell apoptotic induction.
The determination of signal protein on apoptosis pathway (Bcl-2) was analysis by western blot assay in C6 cells. When treated with squamocin (1 & 100 nM) for 24 hours, C6 cells contained lower concentration of Bcl-2 protein as compared to control.
In conclusion, our data have indicated the effect on cell cycle modulation (G2/M phase arrest) and apoptotic induction of squamocin. Meanwhile, squamocin increase the TNF-α level, TNF-R1 expression and decrease Bcl-2 protein in the C6 cell apoptotic induction.
目 錄
頁次
中文摘要 ………………………………………………1
英文摘要 ………………………………………………3
縮寫表 …………………………………………………5
一.緒論 ………………………………………………...6
二.實驗材料與方法……………………….……………11
三.結果… ………………………………………………23
四.討論… ………………………………………………50
五.參考文獻….…………………………………………59
六.附表… ………………………………………………70
圖表目錄
頁次
表 1 Squamocin及抗癌藥物對C6細胞之IC50……...28
表 2 Squamocin對C6細胞之細胞週期影響………...29
表 3 Squamocin對C6細胞之DNA斷裂片段影響…30
表 4 Squamocin對C6細胞之TNF-α表現影響.. …..31
表 5 Squamocin對C6細胞之TNF-R1表現影響...…32
附表1 目前可分離到Squamocin之番荔枝科植物...…..70
附表2 Squamocin對不同癌細胞之IC50及選擇性..……71
頁次
圖1 Annona squamosa 之果實....………………………..33
圖2 Squamocin 之化學結構式...………………………..34
圖3 Squamocin 引起小白鼠之死亡率...………………..35
圖4 Methylene blue 細胞數目檢量線圖.………………36
圖5 以Methylene blue方法偵測不同濃度的.
Squamocin 對C6細胞的毒殺作用.………………37
圖6 以光學顯微鏡觀察Squamocin處理72
小時引起C6細胞型態改變……………………….38
圖7 以流式細胞儀觀察Squamocin對C6
細胞型態改變………………………………………39
圖8 以流式細胞儀觀察Squamocin對C6
細胞之細胞週期改變………………………………40
圖9 以流式細胞儀觀察Squamocin對C6
細胞作用24小時之細胞週期改變………………..41
圖10 以流式細胞儀觀察Squamocin對C6
細胞作用48小時之細胞週期改變………………..42
圖11 以流式細胞儀觀察Squamocin對C6
細胞作用72小時之細胞週期改變………………..43
圖12 以流式細胞儀觀察Squamocin對C6
細胞之DNA斷裂片段改變………………………44
圖13 以流式細胞儀觀察Squamocin對C6
細胞之DNA斷裂片段與細胞大小改變…………45
圖14 以流式細胞儀觀察Squamocin對C6
細胞之TNF-α改變……………………………….46
圖15 以流式細胞儀觀察Squamocin對C6
細胞之TNF-R1改變………………………………47
圖16 以SDS-PAGE觀察Squamocin對C6
細胞作用24小時之蛋白質改變………………….48
圖17 以Western-blotting觀察Squamocin對C6
細胞作用24小時之Bcl-2蛋白改變……………..49
圖18 Squamocin引起細胞凋亡之分子相關機轉圖……58
Ahammadsahib KI, Hollingworth RM, McGovren JP, Hui YH and McLaughlin JL, Mode of action of bullatacin: a potent antitumor and pesticidal Annonaceous acetogenin. Life Sci 53: 1113-1120, 1993.
Alali FQ, Liu XX, and McLaughlin JL, Annonaceous Acetogenins: Recent Progress. J Nat Prod 62: 504-540, 1999.
Allen RT, Hunter III WJ and Agrawal DK, Morphological and biochemical characterization and analysis of apoptosis. J Pharmacol Toxicol 37: 215-228, 1997.
Ashkenazi A and Dixit VM, Death receptors: signaling and modulation. Science 281: 1305-1308, 1998.
Baud V and Karin M, Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11(9): 372-377, 2001.
Bellomo G, Perotti M, Taddei F, Finardi G, Nicotera P and Orrenius S, Tumor necrosis factor α induces apoptosis in mammary adenocarcinoma cells by an increase in intracellular free calcium concentration and DNA fragmentation. Cancer Res 52: 1342-1346, 1992.
Benda P, Lightbody J, Sato G, Levine L and Sweet W, Different rat glial cell strain in tissue culture. Science 161: 370-371, 1968.
Bohn LM, Belcheva MM and Coscia CJ, Evidence for kappa- and mu- receptor expression in C6 glioma cells. J Neurochem 70(5): 1819-1825, 1998.
Bredel M Anticancer drug resistance in primary human tumors. Brain Res Review 35: 161-204, 2001.
Carson DA and Ribeiro JM, Apoptosis and disease. Lancet 341:1251-4, 1993.
Chang FR, Wu YC, Duh CY and Wang SK, Studies on the acetogenins of formosan annonaceous plants, Ⅱ, Cytotoxic acetogenins from Annona reticulata. J Nat Prod 56: 1688-1694, 1993.
Chang FR, Chen JL, Chiu HF, Wu MJ and Wu YC, Acetogenins from seeds of Annona reticulata. Phytochemistry 47: 1057-1061, 1998.
Chang FR, Chen JL, Lin CY, Chiu HF, Wu MJ and Wu YC, Bioactive Acetogenins from the seeds of Annona atemoya. Phytochemistry 51: 883-889, 1999.
Chang FR and Wu YC, Novel Cytotoxic Annonaceous Acetogenins from Annona muricata. J Nat Prod 64: 925-931, 2001.
Chen CY, Chang FR, Chiu HF, Wu MJ, and Wu YC, Aromin-A, an Annonaceous acetogenin from Annona cherimola. Phytochemistry 51: 429-433, 1999.
Chih HW, Chiu HF, Tang KS, Chang FR, and Wu YC, Bullatacin, a potent antitumor annonaceous acetogenin, inhibits proliferation of human hepatocarcinoma cell line 2.2.15 by apoptosis induction. Life Sci 69: 1321-1331, 2001.
Das GC, Holiday D, Gallardo R and Haas C, Taxol-induced cell cycle arrest and apoptosis: dose-response relationship in lung cancer cells of different wild —type p53status and under isogenic condiction. Cancer Lett 165: 147-153, 2001.
Deangelis LM, Brain tumors. New Engl J Med 344(2): 114-123, 2001.
Debatin KM, Activation of apoptosis pathways by anticancer treatment. Toxicol Lett 112: 41-48, 2000.
Dopp JM, Mackenzie-Graham A, Otero GC and Merrill JE, Differential expression, cytokin modulation, and specific function of type-1 and type-2 tumor necrosis factor receptors in rat glia. J neuroimmunol 75: 104-112, 1997.
Duret P, Hocquemiller R, Gantier JC and Figadère B, Semithesis and cytotoxicity of aminoacetogenins and derivatives. Bioorg & Med Chem 7: 1821-1826, 1999.
Elliott WM and Auersperg N, Comparison of the neutral red and methylene blue assays to study cell growth in culture. Biotch Histchem 68(1):29-35, 1993.
Estornell E, Tormo JR and Cortes D, Cherimolin-1, new selective inhibitor of the first energy-coupling site of the NADH: ubiquinone oxidoreductase (complex 1). Biochem and Bioph Res Co 240: 234-238, 1997.
Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL and Henson MP, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148: 2207-2216, 1992.
Fang XP, Rieser MJ, Gu ZM, Zhao GX and McLaughlin JL, Annonaceous Acetogenins : An updated review. Phytochemistry Anal 4: 27-48, 1993.
Gavrieli Y, Sherman Y and Ben-Sasson SA, Identification of programmed cell death situ via specific labeling of nuclear DNA fragmentation. J cell Biol 119: 493-501 1992.
Green DR and Reed JC, Mitochondria and apoptosis. Science 281: 1309-1312, 1998.
Hannun YA, Apoptosis and the dilemma of cancer chemotherapy. Blood 89: 1845-1853, 1997
Huang H, Lung HL, Leung KN and Tsang D, Selective induction of tumor necrosis factor receptor type II gene expression by tumor necrosis factor-α in C6 glioma cells. Life Sci 62(10): 889-896, 1998.
Johnstone RW, Ruefli AA and Lowe SW, Apoptosis : a link between cancer gentics and chemotherapy. Cell 108: 153-164, 2002.
Jolad SD, Hoffmann JJ, Schram KH and Cole JR, Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae). J Org Chem 47: 3151-3153, 1982.
.Jupp OJ, McFarlane SM, Anderson HM, Littlejohn AF, Mohamed AA, MacKay RH, Vandenabeele P and MacEwan DJ, Type II tumor necrosis factor-α receptor (TNFR2) activates c-Jun N-terminal kinase (JNK) but not mitogenactivated protein kinase (MAPK) or p38 MAPK pathways. Biochem J 359: 525-535, 2001.
Kamesaki H, Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy. Int J Hematol 68: 29-43, 1998.
Kim HE, Oh JH, Lee SK and OH YJ, Ginsenoside RH-2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen- and caspase-dependent but Bcl-XL- independent pathway. Life Sci 65(3): 33-40, 1999.
Kluck RM, Bossy-Wetzel E, Green DR and Newmeyer DD, The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 275: 1132-1136, 1997.
Koopman G, Reutelinsperger CPM, Kuijten GAM, Keehnen RMJ, Pals ST and Oers MHJ, Annexin Ⅴ for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84(5):1415-20, 1994.
Kroemer G, The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med 3: 614-620, 1997.
Kuwabara K, Takada M, Iwata J, Tatsumoto K, Sakamoto K, Iwamura H and Miyoshi H, Design syntheses and mitochondrial complex I inhibitory activity of novel acetogenin mimics. Eur J Biochem 267: 2538-2546, 2000.
Latta M, Künstle G, Leist M and Wendel A, Metabolic depletion of ATP by fructose inversely controls CD95- and tumor necrosis factor receptor 1-mediated hepatic apoptosis. J Exp Med 191(11): 1975-1985, 2000.
Liaw CC, Chang FR, Chen YY, Chiu HF, Wu MJ and Wu YC. New Annonaceous acetogenins from Rollinia mucosa. J Nat Prod 62 (12): 1613-1617, 1999.
Liaw CC, Chang FR, Lin CY, Chou CJ, Chiu HF, Wu MJ and Wu YC, New cytotoxic monotetrahydrofuran annonaceous acetogenins from annonamuricata. J Nat Prod 65(4): 470-475, 2002.
Leboeuf M, Cave A, Bhaumik PK, Mukherjee B, and Mukherjee R, The phytochemistry of the Annonaceae. Phytochemistry 21: 2783-2813, 1982.
Luo RY, Chang FR, Chen CY, Teng CM, Yen HF and Wu YC, Antiplatelet activity of N-methoxycarbonyl aporphines from Rollinia mucosa. Phytochemistry 57: 421-425, 2001.
Luoo X, Budihardjo I, Zou H, Slaughter C and Wang X, Bid, Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481-490, 1998.
Martin SJ and Green DR, Apoptosis as a goal of cancer therapy. Curr Opin Oncol 6: 616-621, 1994.
Martin SJ, Reutelingsperger CPM, McGahon AJ, Rader JA, Schie RCAA, LaFace DM and Green DR, Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545-1556, 1995.
Morre DJ, Cabo Rde, Farley C, Oberlies NH and McLaughlin JL, Mode of action of Bullatacin, a potent antitumor acetogenin: Inhibition of NADH oxidase activity of HeLa and HL-60, but not liver, plasma membranes. Life Sci 55: 343-348, 1995.
Motyl T, Regulation of apoptosis: involvement of Bcl-2- related proteins. Reprod Nutr Dev 39: 49-59, 1999.
Nagata S, Apoptosis by death factor. Cell 88: 355-365, 1997.
Negoescu A, Guillermet C, Lorimier P, Brambilla E and Labat-Moleur F, Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity. Biomed Pharmacother 52: 252-258, 1998.
Oberlies NH, Chang CJ and McLaughlin JL, Structure —activity relationships of diverse Annonaceous Acetogenins against multidrug resistant human mammary adenocarcinoma (MCF-7/Adr) cells. J Med Chem 40: 2102-2106, 1997.
Peyrat J-F, Mahuteau J, Figadère B and Cavè A, NMR studies of Ca2+ complexs of Annonaceous acetogenins. J Org Chem 62: 4811-4815, 1997.
Qin LF and Ng IOL, Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells. Cancer Lett 175: 27-38, 2002.
Raynaud S, Nemati F, Miccoli L, Michel P, Poupon MF, Fourneau C, Laurens A and Hocquemiller R, Antitumoral effects of squamocin on parental and multidrug resistant MCF7 (human breast adenocarcinoma) cell lines. Life Sci 65(5): 525-533,1999.
Rupprecht JK, Hui YH and McLaughlin JL, Annonaceous Acetogenins: A review. J Nat Prod 53: 237-278, 1990.
Shimada H, Grutzner JB, Kozlowski JF and McLaughlin JL, Membrane conformation and their relation to cytotoxicity of asimicin and its analogues. Biochemistry 37: 854-866, 1998.
Stouch TR and Gudmundsson O, Progress in understanding the structure—activity relationships of P-glycoprotein. Adv Drug Deliver Rev 54: 315-328, 2002.
Tormo JR, Gonzalez MC, Cortes D and Estornell E, Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins. Arch of Biochem Biophys 369(1):119-26, 1999.
Verhoven B, Schlegel RA and Williamson P, Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182: 1597-1601, 1995.
Wajant H and Scheurich P, Tumor necrosis receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int J Biochem Cell B. 33: 19-32, 2001.
Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ and Linnane AW, Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339: 40-44, 1994.
Wu YC, Hung YC, Chang FR, Cosentino M, Wang HK and Lee KH, Identification of ent-16 beta, 17-dihydroxykauran- 19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from Annona squamosa. J Nat Prod 59(6): 635-7, 1996.
Wyllie AH and Morris RG, Hormone-induced cell death: purification and properties of thymocytes undergoing apoptosis after glucocorticoids treatment. Am J Pathol 109: 78-87, 1982.
Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T, Jones DP and Ang X, Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129-1132, 1997.
Zafra-Polo MC, Figadere B, Gallardo T, Tormo JR and Cortes D, Natural Acetogenins from Annonaceae, synthesis and mechanisms of action. Phytochemistry 48: 1087-1117, 1998.
楊藏雄,鄭睦英,牛心梨之生物鹼成份研究-Ⅱ,台灣藥學雜誌39: 195,1987。
廖日京,台灣木本植物學名目錄, 書林出版49-50, 1993。
甘偉松著,藥用植物學,國立中國醫藥研究所出版,246,1979。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊