跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宗憲
研究生(外文):Tsung-Hsien Lin
論文名稱:血管內皮生長因子(VEGF)及轉形生長因子(TGF-β1)和冠狀動脈側枝循環之關係
論文名稱(外文):The Relationships Between Vascular Endothelial Growth Factor (VEGF) / Transforming Growth Factor-beta (TGF-β1) And Coronary Collaterals
指導教授:許勝雄許勝雄引用關係
指導教授(外文):Sheng-Hsiung Hseu
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:39
中文關鍵詞:血管內皮生長因子轉形生長因子側枝循環
外文關鍵詞:Vascular endothelial growth factorTransforming growth factorCollateral circulationVEGFTGFCollateralCoronary collateral circulationGrowth factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
背景
心臟冠狀動脈側枝循環(Collateral Circulation)在急性心肌梗塞時可提供梗塞區血流,減少心肌缺氧及梗塞範圍,長期而言可改善心臟功能,減少心室瘤(Aneurysm)形成及延長生命.血管內皮生長因子(VEGF)及轉形生長因子(TGF-β)對於血管新生扮演一定的角色.一些研究探討生長因子濃度影響側枝循環的形成但缺少局部濃度的證據.我們探討是否心臟內(冠狀動脈竇,Coronary Sinus-CS)及右心房(Right Atrium-RA)內血管內皮生長因子(VEGF)及轉形生長因子(TGF-β1)濃度與側枝循環有否相關.
方法
從2000年三月到2001年十月,51位接受心導管病人評估進行此研究.47位可收集到完整資料以供研究. 完整病史,導管資料分別記錄於不同時期且檢視者彼此不知相互資料.病人接受心導管前以Goodale-Lubin導管收集冠狀動脈竇(CS)及右心房(RA)內血液以供分析
結果
無側枝循環者有30位(63%),一度側枝循環者有5位(11%),二度側枝循環者有7位(15%),三度側枝循環者有5位(11%).所有有冠狀動脈側枝循環的病人其血管狹窄程度皆大於70%.30位無冠狀動脈側枝循的病人中,10(21%)位血管狹窄程度小於50%, 11(23%)位血管狹窄程度介於50-70%, 9(19%)位血管狹窄程度大於或等於70%, 冠狀動脈側枝循環較發達的病人(二度及三度)其冠狀動脈竇(CS)內血管內皮生長因子(VEGF)濃度較高(P = 0.044).將有無冠狀動脈完全阻塞病人血中生長因子濃度做比較,發現冠狀動脈竇內(CS)血管內皮生長因子(VEGF)濃度於完全阻塞病人身上明顯大於無完全阻塞病人(P=0.037). TGF-β1濃度在無側枝循環者比一度側枝循環者(P = 0.049)及三度側枝循環者(P = 0.018)低.糖尿病病人有疾病的血管數有較高的傾向,側枝循環數目較無糖尿病病人低且生長因子濃度較無糖尿病病人低,但無達到統計學上的差異
結論
冠狀動脈竇內(CS)血管內皮生長因子(VEGF)與轉形生長因子(TGF-β1)濃度與側枝循環之程度有相關.糖尿病病人冠狀動脈竇(CS)及右心房(RA)之血管內皮生長因子(VEGF)與轉形生長因子(TGF-β1)比無糖尿病病人有較低的傾向.這可能和糖尿病病人側枝循環較無糖尿病病人差有關.

Background
In acute myocardial infarction, collateral circulation can contribute significant amount of blood flow, decrease infarct size, improve left ventricular function, reduce the likelihood of left ventricular aneurysm formation, and improve survival. Vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF-β1) are believed to play important roles in vivo. Whether the focal or systemic growth factors concentration influences the formation of collateral vessels should be elucidated. For this purpose we test the hypothesis that growth factors in the coronary sinus (CS) and right atrium (RA) concentration are related to collateral circulation formation.
Method
From March 2000 to October 2001 51 patients scheduled for diagnostic coronary artery angiography were evaluated for possible recruitment into this study at the Kaohsiung Medical University Hospital. 6F Goodale-Lubin catheter for blood sampling was inserted into the coronary sinus and right atrium. Completed data was gathered with 47 patients. The reviewers didn’t know the growth factors data when interpreting the coronary anatomy and collateral circulation grade.
Result
Thirty (63%) of the patients had no collaterals. Five (11%) had grade 1 collaterals, seven (15%) had grade 2 collaterals and five (11%) had grade 3 collaterals. All of the patients with angiographic evidence of collateral filling have more than 70% coronary artery stenosis. In 30 no collaterals patients, ten (21%) of them has coronary artery stenosis less than 50%, eleven (23%) between 50 and 70%, nine (19%) more than 70%. Patients with good collaterals (grade 3 and 2) have higher VEGF concentrations in CS (P = 0.044). Compared with non-total occlusion, patients with total coronary artery occlusion have higher VEGF concentrations in CS (P = 0.037). TGF-β1 in the coronary sinus of grade 0 is lower than those in grade 1 (P= 0.049) and grade 3 (P= 0.018). There is a trend of higher diseased vessels in diabetic patients. The diabetics have few collaterals and lower growth factor concentrations but not meet statistical significance.
Conclusion
There is a relationship between collateral circulation grade and VEGF/TGF-β1 concentrations. The diabetics have lower VEGF and TGF-β1 concentrations in CS and RA, which may be correlated with poor collateral circulation formation.

目次
1. 碩士論文電子檔案上網授權書
P 1
2. 口試通過証明 P 2
3. 中文摘要 P 3
4. 英文摘要 P 4
5. 序言 P 5
6. 前言 P 7
7. 方法與材料 P 9
8. 結果 P 13
9. 討論 P 16
10. 結論 P 21
11. 參考文獻 P 22
12. 附錄 (表及圖) P 27

1. Charney R, Cohen M: The role of the coronary collateral circulation in limiting myocardial ischemia and infarct size. Am Heart J 1993;126:937—945
2. Sabia PJ, Powers ER, Ragosta M, et al: An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 1992;327:1825—1831
3. DeBruyne B, Meier B, Finci L. Potential protective effect of high coronary wedge pressure on left ventricular function after coronary occlusion. Circulation;1988 78: 566-572
4. Mizuno K, Horiuchi K, Matui H. Role of coronary collateral vessels during transient coronary occlusion during angioplasty assessed by hemodynamic, electrocardiographic and metabolic changes. J Am Coll Cardiol;1988;12:624-8
5. Pepper MS: Manipulating angiogenesis: From basic science to the bedside. Arterioscler Thromb Vasc Biol 1997;17:605—619.
6. Henry TD: Therapeutic angiogenesis. BMJ 1999; 318: 1536—1539
7. Pepper MS. Transforming growth factor-ß: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 1997;8:21-43
8. Gensini GG, Da Costa BC. The coronary collateral circulation in living man. Am J Cardiol 1969;24:393-400
9. Piek JJ, Koolen JJ, Hoedemaker G, et al: Severity of single-vessel coronary arterial stenosis and duration of angina as determinants of recruitable collateral vessels during balloon angioplasty occlusion. Am J Cardiol 1991;67:13—17
10. Gibson CM, Safian RD: Limitations of cineangiography-impact of new technologies for image processing and quantitation. Trends Cardiovasc Med 1992; 2: 156
11. Stnadius ML, Alderman EL: Coronary artery revascularization-critical need for and consequences of objective angiographic assessment of lesion severity. Circulation 1990; 82: 2231
12. M Cohen, KP Rentrop. Limitation of myocardial ischemia by collateral circulation during sudden controlled coronary artery occlusion in human subjects: a prospective study. Circulation 1986;74: 469-476.
13. Kawamoto A. Kawata H. Akai Y. Serum levels of VEGF and basic FGF in the subacute phase of myocardial infarction. International Journal of Cardiology 1998; 67(1):47-54
14. David A. Engler. Use of vascular endothelial growth factor for therapeutic angiogenesis. Circulation 1996;94:1496-1498 15. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994; 89:2183-2189
16. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF 165 as sole therapy for myocardial ischaemia. Circulation 1998; 98: 2800—4
17. Aylit Schultz; Lena Lavie; Irit Hochberg. Interindividual heterogeneity in the hypoxic regulation of VEGF. Circulation 1999;100:547-552
18. Martin Fleisch; Michael Billinger; Franz R. Eberli. Physiologically assessed coronary collateral flow and intracoronary growth factor concentrations in patients with 1- to 3-vessel coronary artery disease. Circulation 1999; 100: 1945-1950
19. H El-Gendi, A G Violaris, R Foale, H S Sharma, and D J Sheridan. Endogenous, local, vascular endothelial growth factor production in patients with chronic total coronary artery occlusions: further evidence for its role in angiogenesis. Heart 2002; 87: 158-159
20. Soeki T. Tamura Y. Shinohara H. Tanaka H. Bando K. Fukuda N. Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. Cardiology 2000; 93(3):168-74
21. Hojo Y. Ikeda U. Zhu Y. Expression of vascular endothelial growth factor in patients with acute myocardial infarction. Journal of the American College of Cardiology 2000; 35(4):968-73
22. Tamura K. Nakajima H. Elevated circulating levels of basic fibroblast growth factor and vascular endothelial growth factor in patients with acute myocardial infarction. Japanese Circulation Journal 1999; 63(5):357-61
23. Seko Y. Imai Y. Suzuki S. Serum levels of vascular endothelial growth factor in patients with acute myocardial infarction undergoing reperfusion therapy. Clinical Science 1997; 92(5):453-4
24. Ogawa H. Suefuji H. Soejima H. Increased blood vascular endothelial growth factor levels in patients with acute myocardial infarction. Cardiology 2000; 93(1-2):93-9
25. Kranz A. Rau C. Kochs M. Waltenberger J. Elevation of vascular endothelial growth factor-A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. Journal of Molecular & Cellular Cardiology 2000; 32(1):65-72
26. Hasegawa Y. Takanashi S. Kanehira Y. Tsushima T. Imai T. Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 2001;91(5):964-71
27. Zheng W. Seftor EA. Meininger CJ. Hendrix MJ. Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch role of VEGF and TGF-beta. American Journal of Physiology - Heart & Circulatory Physiology 2001;280(2):H909-17
28. van Royen N, Hoefer I, Buschmann I. Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation. FASEB J 2002;16(3):432-4
29. Abaci A, Oguzhan A, Kahraman S, et al: Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 1999;99:2239-2242
30. Chou E. Suzuma I. Way KJ, et al : Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 2002;105(3):373-9
31. Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovascular Research 2001;49(3):554-60
32. Bucay M, Nguy J, Barrios R, et al: Impaired adaptive vascular growth in hypercholesterolemic rabbit. Atherosclerosis 1998;139:243—251
33. Eva Chou, Izumi Suzuma, Kerrie J. Way. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 2002;105: 373 - 379.
34. de Boer WI, van Schadewijk A, Sont JK. Transforming growth factor beta1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;158(6):1951-7
35. Takizawa H, Tanaka M, Takami K. Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med 2001;163(6):1476-83
36. Issam Moussa,; Jeffrey W. Moses. Angiogenesis for treatment of ischemic heart disease: should we worry about progression of atherosclerosis? Circulation 1999;100:e109
37. Janowitz WR. CT imaging of coronary artery calcium as an indicator of atherosclerotic disease: an overview. Journal of Thoracic Imaging 2001;16(1):2-7
38. Keelan PC. Bielak LF. Ashai K. Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation 2001;104(4):412-7
39. Taylor AJ. Burke AP. O'Malley PG. A comparison of the Framingham risk index, coronary artery calcification, and culprit plaque morphology in sudden cardiac death. Circulation. 2000;101(11):1243-8
40. Chen YX. Nakashima Y. Tanaka K. Immunohistochemical expression of vascular endothelial growth factor/vascular permeability factor in atherosclerotic intimas of human coronary arteries. Arteriosclerosis, Thrombosis & Vascular Biology. 1999;19(1):131-9
41. Inoue M. Itoh H. Ueda M. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 1998;98(20):2108-16
42. McCaffrey TA, Consigli S, Du B, et al. Decreased type II/type I TGF-ß receptor ratio in cells derived from human atherosclerotic lesions: conversion from an antiproliferative to profibrotic response to TGF-ß1. J Clin Invest 1995;96:2667-2675
43. McCaffrey TA, Du B, Consigli S, et al. Genomic instability in the type II TGF-ß1 receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 1997;100:2182-2188.
44. Blann AD, Wang JM, Wilson PB, Kumar S. Serum levels of the TGF-beta receptor are increased in atherosclerosis. Atherosclerosis 1996;120(1-2):221-6
45. Wang XL, Liu SX, Wilcken DE. Circulating transforming growth factor beta 1 and coronary artery disease. Cardiovasc Res 1997;34(2):404-10
46. Wolfgang Jelkmann. Pitfalls in the Measurement of Circulating Vascular Endothelial Growth Factor. Clin Chem 2001;47: 617-623.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top