跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高建國
論文名稱:TheConstructionandE-optimalityofLinearTrend-FreeBlockDesigns
指導教授:丁兆平丁兆平引用關係蔡風順蔡風順引用關係
學位類別:博士
校院名稱:國立政治大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:105
中文關鍵詞:BIB designlinear trend-free block designnearly trend-free block designE-optimal design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:740
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The construction and E-optimality of linear trend-free block designs
Abstract
Suppose there is a systematic effect or trend that influences the observations in addition to the block and treatment effects. The problem of experimental designs in the presence of trends was first studied by Cox (1951,1952). Bradley and Yeh (1980) define the concept of trend-free block designs, i.e., the designs in which the analysis of treatment effects are essentially the same whether the trend effects are present or not. If the trend effect within each blocks are the same and linear, Yeh and Bradley (1983) derive a simple necessary condition for designs to be linear trend-free,
ri(k+1)≡0(mod 2),i=1,2,...,v , (1)
where ri is the replication of treatment i,i=1,...,v, and k is block size.
In case where a trend-free version does not exist Yeh et al. (1985) suggest the use of “ nearly trend-free version”. Chai (1995) pays attention to situations where (1) does not hold. He also shows that often, under these circumstances, a nearly linear trend-free design could be constructed.
Designs that are derived by extending or deleting m disjoint and binary blocks from BIBD are considered. If the resulting designs have linear trend-free versions, by Constantine (1981), they are E-optimal designs with the corresponding classes. When k is even, however, it is impossible to have linear trend-free versions since not all the ri are even in such type of designs and (1) is violated. In this paper, we shall convert the designs to be nearly linear trend-free versions of them by permuting the treatment symbols within blocks, and investigate that the resulting designs remain to be E-optimal.
Keywords: BIB design; Linear trend-free design;Linear trend-free design; Nearly trend-free design; E-optimal design
1995) pays attention to situations where (1) does not hold. He also shows that often, under these circumstances, a nearly linear trend-free design could be constructed.
Designs that are derived by extending or deleting m disjoint and binary blocks from BIBD are considered. If the resulting designs have linear trend-free versions, by Constantine (1981), they are E-optimal designs with the corresponding classes. When k is even, however, it is impossible to have linear trend-free versions since not all the ri are even in such type of designs and (1) is violated. In this paper, we shall convert the designs to be nearly linear trend-free versions of them by permuting the treatment symbols within blocks, and investigate that the resulting designs remain to be E-optimal.
Keywords: BIB design; Linear trend-free design; Nearly trend-free design; E-optimal
1.Introdution
2.Notation and Preliminary Result
3.Eigenvalue
4.Construction Method
5.Main Result
Agrawal, H. (1966). Some generalizations of distinct representatives with applications to statistical designs. Ann. Math. Statist. 37, 526-527.
Agrawal, H. and Prasad, J. (1981). On the structure of incomplete block designs. Calcutta Statistical Association Bulletin 30, 65-76.
Bradley, R.A. and Yeh, C.M. (1980). Trend-free block designs: theory. Ann. Statist. 8, 883-893.
Chai, F.S. and D.Majumdar (1993). On the Yeh-Bradley conjecture on linear trend-free block design. Ann. Statist. 21, 2087-2097.
Chai, F.S. (1995). Construction and optimality of nearly linear trend-free designs. J. Statist. Plann. Inference 48, 113-129.
Chai, F.S. (1998). A note on generalization of distinct representatives. Statistics & Probability Letters 39, 173-177.
Cochran, W.G. and Cox, G.M. (1957). Experimental Designs. 2nd edition. Wiley, New York.
Connor, W.S., Jr. (1952). On the structure of balanced incomplete block designs. Ann. Math. Statist. 23, 57-71.
Constantine, G.M. (1981). Some E-optimal block designs. Ann. Statist. 9, 886-892.
Cox, D.R. (1951). Some systematic experimental designs. Biometrika 39, 312-323.
Cox, D.R (1952). Some recent work on systematic experimental designs. J. Roy. Statist. Soc. Ser. B. 14, 211-219.
Graybill, F.A. (1971). Introduction to Matrices with Applications in Statistics. Wadsworth Publishing, Belmont, CA.
Hall, M. Jr. (1986). Combinatorial Theory. 2nd edition. Wiley, New York.
Jacroux, M., Majumdar, D. and Shah, K.R. (1995). Efficiency block designs in the presence of trends. Statist. Sinica 5, 605-615.
Jacroux, M., Majumdar, D. and Shah, K.R. (1997). On the determination and construction of optimal block designs in the presence of linear trends. J. Amer. Satist. Ass. 92, 375-383
Jacroux, M. (1998). On the determination and construction of E-optimal block designs in the presence of linear trends. J. Statist. Plann. Inference 67, 331-342.
König, D. (1950). Theorie der Endlichen and Unendlichen Graphen 170-178. Chelsea, New York.
Lin, M. and Dean, A.M. (1991). Trend-free block designs for varietal and factorial experiments. Ann. Statist. 19, 1582-1596.
Raghavarao, D. (1971). Construction and Combinatorial Problems of Design of Experiments. Wiley, New York.
Stufken, J. (1988). On the existence of linear trend-free block designs. Comm. Statist. Theory Methods 17, 3857-3863.
Yeh, C.M. and Bradley, R.A. (1983). Trend-free block design; existence and construction results. Comm. Statist. Theory Methods 12, 1-24.
Yeh, C.M., Bradley, R.A. and Notz, W.I. (1985). Nearly trend-free block designs. J. Amer. Statist. Assoc. 80, 985-992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 許榮富(1990):科學概念發展與診斷教學研究合作計畫芻議,科學發展月刊,18(2),150-157。
2. 張敬宜(1997):國小高年級學童蒸發、凝結與沸騰概念之研究。科學教育學刊,5(3),321-346。
3. 林顯輝、林秀鳳和潘惠冠(1995):符合科學教育新目標的自然科教科書。屏師科學教育,1,13-24。
4. 江新合(1992):中學生浮力相關概念發展及其相關迷思概念的分析研究。高雄師大學報,3,139-177。
5. 王靜如(1997):現代的學習認知研究與建構論賦予科學教育改革的啟示。屏師科學教育,5,2-13。
6. 王春源、郭重吉和黃曼麗(1992):物質變化相關概念診斷測驗工具之發展。國立彰化師範大學科學教育,3,241-265。
7. 郭重吉(1988):從認知觀點探討自然科學的學習。教育學院學報,13,351-378。
8. 郭重吉(1990):學生科學知識認知結構的評估與描述。彰化師範大學學報,1,279-319。
9. 郭重吉(1992):從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,20(5),548-570。
10. 黃寶鈿、陳世雄(1993):從重量守恆推理能力探究學生對物質變化的錯誤概念。師大學報,38,175-201。
11. 劉德明(1995):小學生的物質變化與物質概念之研究。花蓮師院學報,第5期,65-113。
12. 鍾聖校(1994):對科學教育錯誤概念研究之省思。教育研究資訊,2(3),89-110。