|
[1] Burke, P. J., The output of a queueing system. Operations Research, Vol.4, pp.699-704, 1956. [2] Buzacott, J. A. and Shanthikumar J.G., Stochastic models of manufacturing systems. Prentice-Hall, 1993. [3] Daley, D. J., The correlation structure of the output process of some single server queueing systems. Annals of Mathematical Statistics, Vol.39, pp.1007-1019, 1968. [4] Daley, D. J., Queueing output processes. Advances in Applied Probability, Vol.8, pp.395-415, 1976. [5] Daniel, P. H. and Matthew, J. S., Stochastic models in operations research Volume I. McGraw-Hill Book Company, 1982. [6] Disney, R. L. Farrel, R. L. and De Morais, P. R., A characterization of M/G/1/N queues with renewal departure processes, Management Sciences, Vol.19, pp.1222-1228, 1973. [7] Finch, P. D., The output process of the queueing system M/G/1. Journal of Royal Statistical Society, Series B, Vol.21, pp.375-380, 1959. [8] Fischer, W. and Meier-Hellstern, K., The Markov-modulated Poisson process (MMPP) cookbook. Performance Evaluation, Vol.18, pp.149-171, 1993. [9] Ishikawa, A., On the joint distribution of the departure intervals in an M/G/1/N queue. Journal of the Operations Research Society of Japan, Vol.34, pp.422-435, 1991. [10] Jenkins, J. H., On the correlation structure of the departure process of the M/E/1 queue. Journal of the Royal Society, Series B, Vol.28, pp.336-344,1966. [11] King, R. A., The covariance structure of the departure process from M/G/1 queues withvfinite waiting line. Journal of the Royal Statistical Society, Series B, Vol.33, pp.401-405, 1971. [12] Laslett, G. M., Characterizing the finite capacity GI/M/1 queue with renewal output, Management Sciences, Vol.22, pp.106-110, 1975. [13] Luh, H., Derivation of the N-step interdeparture time distribution in GI/G/1 queueing systems. European Journal of Operational Research. pp.194-212, 1999. [14] Luh, H., The correlation structure of GI/G/1 queue. National ChengChi University, Taipei, preprint, 2001. [15] Neuts, M. F., Structured stochastic matrices of M/G/1 type and their applications. New York: Marcel Dekker, 1989. [16] Osaki, S., Applied stochastic system modeling. Springer-Verlag, 1992. [17] Ping-Cheng Yeh and Jin-Fu Chang, Characterizing the departure process of a single server queue from the embedded Markov renewal process at departures. Queueing Systems, Vol.35, pp.381-395, 2000. [18] Ramaswami, V., The N=G=1 queue and its detailed analysis. Advances in Applied Probability, Vol.12, pp.222-261, 1980. [19] Reich, E., Waiting times when queues are in tandem. Annals of Mathematical Statistics, Vol.28, pp.768-773, 1959. [20] Saito, H., The departure process of an N=G=1 queue. Performance Evaluation 11, pp.241-251, 1990. [21] Takagi, H. and Nishi, T., Correlation of interdeparture times in M/G/1 and M/G/1/K queues. Journal of the Operations Research Society of Japan, Vol.41, pp.142-151, 1998. [22] Tijms, H. C., Stochastic Models an algorithmic approach. New York: John Wiley & Sons, 1994.
|