跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張朝順
論文名稱:水泥系複合材料主動式質流測儀研發與測析
論文名稱(外文):Development and Measurement of An Active Rheometer for Cement-based Composite Materials
指導教授:顏聰顏聰引用關係
指導教授(外文):Yen Tsong
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:257
中文關鍵詞:水泥系複合材料主動式質流測儀水泥漿水泥砂漿混凝土量測不確定度
外文關鍵詞:Active RheometerComposite Materialsviscosityflowabilityconcrete
相關次數:
  • 被引用被引用:7
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自1980年以來,世界各先進國家積極從事高性能混凝土(HPC)的研發,開啟混凝土科技的新紀元。台灣地區也同時積極投入研發適於本土化工程技術的中等強度高性能混凝土(TAICON);日本則大力推廣自填充混凝土(SCC)。然而,攸關HPC、TAICON、SCC之配比設計以及品質控制的工作性量測指標,迄今為止,僅就傳統工作性量測試驗法加以改良,或發展適用特定範疇的試驗方法,作為其量測試驗的依據。由於質流試驗係量測材料在流動狀態下,試樣之變形與應力的相對關係,所以多數學者皆認為:質流試驗法應該是HPC、TAICON或SCC進行流動性量測指標的最佳試驗方法。現階段對新拌水泥系材料質流性質的量測,最常被使用的測儀有同軸圓柱質流儀及攪拌式質流儀,兩者皆係利用強制旋轉轉矩來形成流場,其材料黏結潤滑的組合本質與均質性容易受到擾動,將導致試樣的不穩定而損及量測的精度。因此,質流試驗主要量測工具的質流測儀,尚有相當大的精進發展空間與必要性。
本研究以研發可適用於各種不同組合水泥系材料質流試驗的質流測儀為主要目標。根據質流學與流體機械原理,藉由水泥系材料自體能量轉換,來產生環狀流動狀態。如此可避免或消除由於在試樣上強制施加外力所造成對量測結果的不良影響,從而提高質流量測的精準度。
主動式質流測儀 (Active Rheometer, ARM)的設計概念是以不強制施加外部驅動作用力為原則,須考量水泥材料組成基本特性,並依循量測原理與流體機械概念,設計出新型質流測儀。測儀的特性在於能導引水泥系材料試樣,由位能轉換成動能以產生流動,進而利用感測元件、轉換電路與資料擷取系統,讀取試樣的流動變形與轉動力矩等相關數據,再經由電腦程式,依質流模式分析以求得材料之質流參數。
本研究配合相關流動性試驗方法,進行一系列的率定試驗、驗證試驗、水泥砂漿及高流動性混凝土分析試驗。經由試驗結果得知:ARM質流測儀系統本身的量測特性,符合實驗室最佳(Excel)級控制的標準,其變異係數均小於10%。而且,ARM質流測儀可以準確地量測視黏滯係數介於1.3-60N.s/m2之間的黏滯性流體。換言之,ARM質流儀的可量測範圍,涵蓋水泥系複合材料如水泥漿、水泥砂漿及流動混凝土的視黏滯係數,故可適用於不同組合水泥系複合材料的質流參數測析。
Major industrial nations around the world started to engage in research and development of high performance concrete (HPC) in 1980. Without an exception, Taiwan joined the R/D programs to develop new concrete technologies meeting her national needs aiming at a moderate strength HPC (4,000 to 5,000 psi) called TAICON, while Japan spear-headed in the direction of Self-Compacting Concrete (SCC). Mixture designs, chemical admixtures, and apparatus for measuring flowability of fresh concrete are very important to the HPC development. Significant progresses have been made for the first two items but the last one. So far, the HPC flow-measuring procedure used today seems still hanging on the conventional technique that many scholars question its validity.
It is well known that the hardware for the conventional rheology test is of a coaxial cylinder rheometer or a mixing rheometer driven by a torsional force that disperses the test sample. The applied force causes undesirable heterogeneity to the test sample and results to inaccurate measurements. Conceivably, a new rheometer suitable for measuring flowability of HPC, TAICON, and SCC is desirable.
The objective of this study is to develop a new rheometer and its test procedures. The new apparatus was designed by our research group taking into account of the rheometry principles and was contracted to a mechanical contractor for fabrication. The design concept considered the fluid dynamics that is partially caused by the potential energy inhibited in the test sample. The system was designed to cause the test sample to flow by its own gravitation rather than an external force, and is therefore, called "Active Rheometer (ARM)." A commercially available data acquisition system was used in conjunction with a notebook computer to digitize and process the collected data.
Series of tests including calibrations were carried out to generate direct flow measurements that are subsequently converted to shear stresses and strain rates. Samples for the ARM and conventional rheometer tests involved freshly mixed cement paste, mortar, and concrete. The obtained data were made into desirable tables and charts for comparing the ARM measurements against the conventional rheometer ones. The maximum deviation between them is less than 10%. It is worth to note that the Active Rheometer is sensitive enough to measure viscosity of test samples as low as 0.35 N.s/m2. Although the highest viscosity measured in the investigation is 60 N.s/m2, it is our belief the apparatus is suitable to measure even higher viscosity. The research group is profoundly pleased with the performance of the Active Rheometer and flowability measurements that yield.
第一章 緒論 1
1-1 研發動機 1
1-2 研究目的 5
1-3 研究內涵 7
1-4 研究方法與流程 8
第二章 文獻回顧 19
2-1 質流理論與模式 19
2-1.1質流之定義 19
2-1.2水泥漿之質流行為與模式 20
2-1.3水泥砂漿之質流行為與模式 23
2-1.4新拌混凝土之質流行為與模式 24
2-2 質流測儀發展 29
2-2.1同軸圓柱質流儀 30
2-2.2 MK-I、MK-II、MK-III質流儀 31
2-2.3 HPC質流測儀 33
2-2.4 TRM質流儀 34
2-3 數值解析模式 36
第三章 理論模式之建立與分析 63
3-1 黏性流體力學基本原理 63
3-1.1黏性流體應力場 63
3-1.2黏性流體應變場 65
3-1.3應力與應變關係 67
3-2 理論模式推導 74
3-3 數值模擬分析 80
第四章 質流測儀之設計與研發 93
4-1 主動式質流測儀組構 94
4-1.1導引及感測裝置 96
4-1.2信號處理與傳輸設備 100
4-1.3資料擷取系統 101
4-1.4控制與攝影系統 102
4-2 資料擷取與分析軟體 103
4-3 量測不確定度分析 105
4.3-1重複性與重現性分析 108
4.3-2 ARM量測不確定度分析 109
第五章 實驗計畫與量測方法 127
5-1 實驗設計與實驗變數 128
5-2 試驗流程 131
5-3 試驗材料與配比 132
5-4 量測方法與測儀 136
5-4.1質流測儀 136
5-4.2黏度測儀 139
5-4.3流動性測儀 141
第六章 試驗結果與討論 161
6-1 率定試驗 161
6-1.1空載率定試驗 161
6-1.2荷載率定試驗 163
6-2 驗證試驗 166
6-2.1牛頓流體 167
6-2.2水泥漿體 168
6-3 分析試驗 172
6-3.1水泥砂漿 172
6-3.2混凝土 181
6-4 ARM流動特徵判別圖 195
6-5 工程實務應用 197
第七章 結論與建議 243
7-1 結論 243
7-2 未來研發建議 247
參考文獻 251
1. 顏聰,「混凝土科技之回顧與展望」,興大工程學刊,十二卷, 三期, 2001, pp.143-156.
2. Sandor Popovics, “Fundamentals of Portland Cement Concrete: A Quantitative Approach Vol. 1: Fresh Concrete”, New York: John Wiley & Sons, 1982.
3. Brandt, A. M., “Cement-based Composites: Materials, Mechanical Properties and Performance”, London: E & FN SPON, 1995, pp.36-40.
4. 湯兆緯,“高性能混凝土之質流行為與工作性”,中興大學博士論文, 2000,1
5. Tattersall, G. H. & P. F. G. Banfill, “The Rheology of Fresh Concrete”, Boston: Pitman Books. 1983.
6. Tattersall, G. H., “Workability and Quality Control of Concrete”, London: E & FN SPON, 1991.
7. Ritchie, Alistair G. B., “The Rheology of Fresh Concrete”, Proceedings, ASCE, Vol. 94, C01, Jan. 1968, pp.55-74.
8. Tattersall, G. H., “Measurement of Workability Concrete”, paper presented to a Conference of the East Midlands Region of the Concrete Society, Nottingham, 1971.
9. Tattersall, G. H., “The Principles of Measurement of the Workability of Fresh Concrete and a Proposed Simple Two-Point test, in Fresh Concrete: Important Properties and their Measurement”, Proceedings of a RILEM Seminar held 22-24 March 1973, Leeds, Vol.1, Leeds, The University, 1973, pp.2, 2-1 to 2, 2-33.
10. 顏聰,「水泥漿、水泥砂漿及新拌混凝土之質流性質」,中華民國第四屆力學會議論文集,1980, 12, pp.275-290.
11. Aitcin, P. C., “High-Performance Concrete”, London: E & FN SPON, 1998. pp. 22-33.
12. 陳振川,「高性能混凝土發展現況與展望」,高性能混凝土配比設計實作論文集,第1-17頁,民國87年。
13. 蘇南,「21世紀TAICON(台灣混凝土)之配比設計」,高性能混凝土配比設計實作論文集,第45-81頁,民國87年。
14. 牧保峰,「高性能混凝土流動性檢測規範─日本現行規範與探討」,混凝土施工自動化, 台北:台灣營建研究院, 1998, pp. 125-149。
15. Vom Berg, Wesche “Rheologische Eigenschaften von Zementleim and Frishbeton”, Beton, pp. 26-27, Januar 1973.
16. Bingham, E.C. and Reiner, M., “The Rheological Properties of Cement and Cement-Mortar-Stone,” Physics, No. 4, 1933, pp. 88-96.
17. BS 5168, “Glossary of Rheological Terms”, British Standards Institution, 1996.
18. 劉士榮,「高分子流變學」, 劉士榮博士編著,民國84年。
19. Roy, D. M. & Asaga, K., “The Effect of Mixing Procedures on Viscometric Properties of Mixes Containing Superplasticizers”, Cement and Concrete Research, Vol.9, 1979, pp. 731-739.
20. Odler, I., U. Duckstein and Th. Becker, Cement and Concrete Research, 6(4), 1978, pp. 469.
21. Skvara, F., K. Kolar, J. Novotny, Z. Zadak, Cement and Concrete Research, 10(2), 1980, pp. 253.
22. Richard Shaughnessy,Ⅲ and Peter E. Clark, “The Rheological Behavior of Fresh Cement Pastes”, Cement and Concrete Research, 18, 1988, pp. 327-341.
23. Bombled, J. P., Rev. Mater. Construction, 68B, 1974, p. 137.
24. Banfill, P. F. G. and D. C. James “On the Viscometer Examination of Cement Pastes”, Cement and Concrete Research, Vol. 11, 1981, pp. 363-370.
25. Flatten, H., “Untersuchungen Zum Verformungsverhalten Von Zementleim”, Dissertation, T. H Aachen, Februar 1973.
26. Von Rendchen, “Einfluss verschiedener Zemente auf das Fliessverhalten und die Stabilitat Von Zementsuspension”, Beton, 9/1976, s.321-325.
27. Papadakis, M., “L''injectabilite des coulis et mortiers de Constraction”, Nr. 531, 1959, s.285-302.
28. Banfill, P. F. G., “The Rheology of Cement Paste: Progress since 1973”, “Rheology of Fresh Cement and Concrete”, Edited by P. F. G Banfill, The British Society of Rheology, 1991.
29. A. Papo, “Rheological Models for Cement Pastes”, Materials and Structures, Vol. 21, 1988, pp.41-46.
30. Atzeni, C., L. Massidda and U. Sanna, “’Comparison between Rheological Models for Portland Cement Pastes”, Cement and Concrete Research, Vol.15, 1985, pp. 511-519.
31. Banfill, P. F. G., “A Coaxial Cylinders Viscometer for Mortar: Design and Experimental Validation”, “Rheology of Fresh Cement and Concrete”, Edited by P. F. G. Banfill, The British Society of Rheology, 1991.
32. Hornung, F. E., Schwenk Zementwerke KG, Ulm, “The Use of The Brabender Viscocorder to Study The Consistency of Fresh Mortar by Two-Point Tests”, “Rheology of Fresh Cement and Concrete”, Edited by P. F. G. Banfill, The British Society of Rheology, 1991.
33. 顏聰,「混凝土之質流性質」,國立中興大學土木系,民國68年4月。
34. Cheng, D. C. H., “Viscosity-Concentration Equations and Flow Curves for Suspensions”, Chemical Index, N10, 1980, pp. 403-406.
35. Dartsch, B., “Grundlagen Zum Verformungsverhalten rolliger und viskoser Baustoffe gezeigt am Beispiel des Frischbetons”, Materialpruefung 17, Nr. 8, 1975, s.271-275.
36. L''Hermite, “Franzoesische Forschung ueber das Ruettlen des Betons”, Die Bautechnik, 36. Jahrgang, Heft 2, Februar, 1959, p.56.
37. 顏聰,「混凝土之充分夯實研究」,土木水利季刊,第四卷,第三期,民國66年11月,第21-35頁。
38. Kakuta, S., “Rheology of Fresh Concrete Under Vibration”, “Rheology of Fresh Cement and Concrete”, Edited by P. F. G. Banfill, The British Society of Rheology, 1991.
39. Losinger, R., “Die Messung der Verarbeitbarkeit von Frisch- beton”, Diss. ETH Eurich, 1956.
40. De Larrard, F.; Hu. C.; Sedran T.; Szitkar C.; Joly M., Claux F., and Derkx F., “A new rheometer for soft-to-fluid fresh concrete”, ACI Materials Journal, V. 94. No. 3, May-June, 1997, pp.234-243.
41. GjØrv, Odd E., “Workability:A New Way of Testing”, Concrete International, September, 1998, pp.57-60.
42. Hu, C. and F. De Larrard, “The Rheology of Fresh High-Performance Concrete”, Cement and Concrete Research, Vol.26, No.2, 1996, pp. 283-294.
43. 黃兆龍,「混凝土性質與行為」,詹氏書局,民國86年,pp. 215-244。
44. Murata, Jiro and Hiroji Kikukawa, “Viscosity Equation for Fresh Concrete “, ACI Materials Journal, V.89, No.3, May-June 1992.
45. Roscoe, R., “Viscosity of Suspension of Rigid Spheres”, British Journal of Applied Physics, London, V.3, Aug., 1952, pp.267-269.
46. J. Ferguson and Z. Kemblowsk, “Applied Fluid Rheology”, Elsevier Applied Science, London and New York, 1991.
47. Christopher W. Macosko, “RHEOLOGY: Principles, Measurement, and Applications”, New York: VCH Publishers, Inc., 1993, pp.175-231.
48. Richard Shaughnessy,Ⅲ and Peter E. Clark, Cement and Concrete Research, 18, 1988, pp.327-341.
49. Uzomaka, O. J., “A Concrete Rheometer and its Application to A Rheological Study of Concrete Mixes”, Rheological Acta, 13, 1974, pp. 12-21.
50. Murata, J. and H. Kikukawa, “Study on Rheological Analysis of Fresh Concrete, in Fresh Concrete: Important Properties and their Measurement”, Proceedings of a RILEM Seminar heid 22-24 March 1973, Leeds, Vol. 1, Leeds, The University, 1973, pp.1.2-1 to 1.2-33.
51. Morinaga, S., “Pumpability of Concrete and Pumping Pressure in Pipe lines, in Fresh Concrete: Important Properties and Their Measurement”, Proceedings of a RILEM Seminar heid 22-24 March 1973, Leeds, Vol. 3, Leeds, The University, 1973, pp.7.3-1 to 7.3-39.
52. Sakuta, M. S., Yamane, H. Kasami, and A. Sakamoto, “Pumpability and Rheological Properties of Fresh Concrete, in Proceedings of Conference on Quality Control of Concrete Structures, 17-21 June 1979, Stockholm, Vol. 2, Stockholm, Swedish Cement and Concrete Research Institute, 1979, pp. 125-132.
53. Bloomer, S. J., “Further Development of the Two-point Test for the Measurement of the Workability of Concrete”, PhD. Thesis, University of Sheffield, 1979.
54. Scullion, T., “The Measurement of the Workability of Fresh Concrete”, MA thesis, University of Sheffield, 1975.
55. 高健章、汪永宇、張阿本、張甫光,「飛灰增進混凝土泵送性之研究(1)」,國科會研究報告NSC-77-0410-E-022-038, ,民國78年。
56. 高健章、蕭景槐,「高性能混凝土流動性之研究」,國科會研究報告NSC-85-2211-E-002-009,民國85年。
57. 劉俊杰,「高性能混凝土緻密充填配比法及早期性質演繹」,國立台灣技術學院博士論文,民國85年。
58. Wallevik, O. H., and GjØrv, O. E., “Development of a Coaxial Cylinders Viscometer for Fresh Concrete,” Proceeding of the International Conference on Properties of Fresh Concrete, Chapman and Hall, London, 1990, pp. 213-224.
59. 顏聰、湯兆緯、張朝順、黃玉麟、陳豪吉、黃永盛,「HPC之質流行為及其流動性測驗法探討」,第四屆結構工程研討會,9/1998, pp.127-134.
60. Yen T., C. W. Tang, C. S. Chang and K. H. Chen, “The Rheological Behavior of Fresh High-Performance Concrete”, Proceedings of International Conference on Infrastructure Regeneration and Rehabilitation Improving the Quality of Life through Better Construction, Sheffield Academic Press, 28 June—2 July, 1999, pp.329-338.
61. Yen T., C. W. Tang, C. S. Chang and K. H. Chen, “Flow Behavior of High Strength High-Performance Concrete”, Cement Concrete Composites Vol. 21, 1999, pp.413-424.
62. Y. Tanigawa, H. Mori, K. Tsutsui and Y. Kurokawa, ”Constitutive Law and Yield Condition of Fresh Concrete”, Transactions of the Japan Concrete Institute, Vol.9, 1987.
63. Robert W. Fox and Alan T. McDonald, “Introduction to Fluid Mechanics, 4th Edition”, New York: John Wiley & Sons, Inc., 1994.
64. Bruce R. Munson, Donald F. Young, Theodore H. Oksh, “Fundamentals of Fluid Mechanics 2/e”, New York: John Wiley & Sons, Inc., 1990.
65. G. Astarita and G. Marrucci, “Principles of non-Newtonian Fluid Mechanics”, London: McGraw-Hill, 1974, pp.153-233
66. Pau-Chang Lu, “Introduction to the Mechanics of Viscous Fluids”, New York: Holt, Rinehart and Winston, Taipei: Mei Ya, 1975.
67. J. Francis Young, Sidney Mindess, Robert J. Gray, “The Science and Technology of Civil Engineering Materials”, New Jersey: Prentice Hall, 1998, pp.138-150
68. Y. C. Fung, “A First Course in Continuum Mechanics”, Englewood Cliffs, N.J.: Prentice-Hall, 1977.
69. T.J. Chung, “Continuum Mechanics”, Englewood Cliffs, N.J.: Prentice Hall, 1988, pp.154-226, 332-353.
70. McDonald, Patrick H., “Continuum Mechanics”, Boston: PWS Pub. Co., 1996, pp.182-234
71. Peter Haupt, “Continuum Mechanics and Theory of Materials”, Berlin New York: Springer, 2000, pp.177-254.
72. 謝曉星,「計算流體力學及熱傳學」,臺北市 : 高立, 民國82年,pp.33-45, 231-284.
73. A.J. Baker, “Finite Element Computational Fluid Mechanics”, Washington: Hemisphere Pub. Corp., 1983, pp.233-303, 371-469
74. Wilhelm Flugge, “Viscoelasticity”, Berlin; New York: Springer-Verlag, 1975, pp.1-33
75. Bilal M. Ayyub and Richard H. Mccuen, “Numerical Methods for Engineers”, N.J.: Prentice Hall, 1996, pp.180-262
76. William T. Thomson, “Theory of Vibration with Application”, California: Prentice-Hall International Editions, 1988, pp351-412.
77. Kenneth G. McConnell, “Vibration Testing: Theory and Practice”, New York: John Wiley & Sons, 1995, pp.63-157
78. Thomas G. Beckwith, N. Lewis Buck, Roy D. Marangoni, “ Mechanical Measurements 3rd Edition”, Reading, Mass: Addison-Wesley Pub. Co., 1982.
79. 楊善國,「感測與量度工程(修訂二版)」,臺北:全華,民國86年。
80. William H. Roadstrum, Dan H. Wolaver, “Electrical Engineering: for all Engineers”, New York: John Wiley & Sons, 1994
81. 盧明智, 盧鵬任,「感測器應用與線路分析」, 臺北:全華, 民國85年。
82. 李傳亮,「週邊感測器專題製作」,臺北:電子技術, 民國85年。
83. R. S. Sirohi and H. C. Radha Krishn, “Mechanical Measurements”, New York: John Wiley & Sons, 1980.
84. J. P. Holman, “Experimental Methods for Engineers”, New York: McGraw-Hill, 1994.
85. 張朝順、潘坤勝,「不確定度在混凝土強度量測上之應用」,第二屆海峽兩岸計量科技學術研討會,台北,11/1997, pp.549-561.
86. ISO/TAG4, “Guide to the Expression of Uncertainty in Measurement”, ISO, 1995.
87. CSIRO, “Course on the ISO Guide to the Expression of Uncertainty in Measurement”, CSIRO, 1997
88. Brookfield Engineering Laboratories, INC., “BROOKFIELD Digital Viscometer Model DV-II+ Ver.2.0 Operating Instructions”, 1994
89. Brookfield Engineering Laboratories, INC., “A Guide to Getting More from Your Brookfield Viscometer”, 1995
90. His-Wen Chai, “Design and Testing of Self-Compacting Concrete”, University of London: PhD. Thesis, 1998.
91. Masahiro Ouchi,「Mix-Design and Testing Methods for Self-Compacting Concrete」,混凝土施工自動化, 台北:台灣營建研究院, 1998, pp. 9-16
92. 王文中, “Excel 於資料分析與統計學上的應用”, 臺北:博碩文化, 民國88年。
93. Albert H. Bowker, Gerald J. Lieberman, “Engineering Statistics”, Englewood Cliffs, N.J: Prentice-Hall, 1972.
94. Gerald Keller, Brian Warrack, Henry Bartel, “Statistics for Management and economics”, Belmont, Calif.: Duxbury Press, 1994.
95. Hilbert Schenck, “Theories of engineering experimentation”, Washington: Hemisphere Pub. Corp., 1979
96. Douglas C. Montgomery, George C. Runger, Norma Faris Hubele, “Engineering statistics”, New York: John Wiley & Sons, 1998.
97. 張有義,郭蘭生編譯, Duncan J. Shaw原著; “膠體及界面化學入門”, 臺北:高立出版,民國86年。
98. Masahiro Ouchi, Makoto Hibino, Kazumasa Ozara and Hajime Okamura, “A Rational Mix-Design Method for Mortar in Self-Compacting Concrete”, The Sixth East Asia-Pacific Conference on Structural Engineering & Construction, Taipei, 1998, pp.1307-1312
99. 黃登源著, “應用迴歸分析”,臺北:華泰,民國87年。
100. Evan James Williams, “Regression analysis”, New York: Wiley, 1959.
101. Mindness, S & J.F. Young, “Concrete”, Englewood Cliffs, N. J.: Prentice-Hall, 1981 (Taiwan)
102. Pasko,T.J.and Larson,T.D.,“Some Statistical Analyses of the Strength and Durability of Fly Ash Concrete,”Proceeding ASTM,Vol.62, 1962, pp.1054-1067.
103. Kokubu,M.,“Fly Ash and Ash Cement”, Fisth International Symposium on the Chemistry and Cements, Tokyo, Japan, 1968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top