跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳皇霖
研究生(外文):Huang-Lin Chen
論文名稱:H∞與LQR控制效用之比較
論文名稱(外文):Comparative Study of H∞ and LQR Active Control Effectiveness
指導教授:林其璋林其璋引用關係
指導教授(外文):Chi-Chang Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:132
中文關鍵詞:H∞控制律LQR控制律主動控制時間延遲
外文關鍵詞:H∞ Control AlgorithmLQR Control AlgorithmActive ControlTime Delay
相關次數:
  • 被引用被引用:4
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
本文探討主動控制系統中,LQR與 兩控制律在相同的控制條件下降低結構動態反應效用之比較。研究結果顯示,不論是控制理論推演,控制後動態特性方程式、解析式,或是數值模擬分析結果,均可證明LQR控制律為 控制律當控制參數 趨近於無窮大時之特例。所以, 控制律不但包含LQR控制律,更能藉由調整兩控制參數 與 增加結構主要模態阻尼比,使得具有更佳的減振效果。同時,對於控制力施加時間延遲效應,本研究發現,採用 控制方法,若選擇控制參數 愈小,容許的時間延遲愈長,可見 控制律更具強健性,為一較佳控制法則。

In this study, we want to discuss the control effectiveness of reducing structural response by applying two different control algorithm, H∞ and LQR control algorithm, which are under the same control conditions. The research shows that, no matter the control theory, equations for getting the feedback gains, or analytic frequency and damping ratio equations, we all can prove that LQR control algorithm could be the special case of H∞ control algorithm when parameter γ closes to infinity. Besides, H∞ control algorithm could be more effective for reducing structural response, cause rising damping ratio higher and keeping frequency closing to the original structural frequency by lowing down parameter γ. And another class in control force execution time delay, we find that adopting smaller parameter γ could extend the maximum allowable delay time under the same control conditions. Therefore, we put it into a conclusion that H∞ control algorithm not only include LQR control algorithm, but also can be more robust, is a better active control algorithm.

誌 謝 i
摘 要 ii
Abstract iii
目 錄 iv
表 目 錄 vi
圖 目 錄 viii
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 2
1.3本文內容 4
第二章 連續時間LQR與H∞控制理論 6
2.1 LQR之控制理論、解析解 7
2.1.1狀態回饋控制理論 7
2.1.2直接輸出回饋控制理論 8
2.2 H∞之控制理論、解析解 10
2.2.1狀態回饋控制理論 11
2.2.2直接輸出回饋控制理論 12
第三章 LQR與H∞之關係比較 16
3.1控制理論之比較 16
3.2求解方程式之比較 17
3.2.1狀態回饋 17
3.2.2直接輸出回饋 17
3.2.3直接輸出回饋與狀態回饋之關係 18
3.3樓房結構受地震擾動不同控制律之參數選擇 20
3.3.1 LQR控制律之參數選擇 21
3.3.2 H∞控制律之參數選擇 22
第四章 控制效用之比較 23
4.1單自由度結構控制系統 23
4.1.1狀態回饋控制之比較 24
4.1.2直接輸出回饋之比較 31
4.1.3變化頻率單自由度結構之比較 35
4.2多自由度結構控制系統 35
4.2.1控制權重參數之選擇 36
4.2.2控制效用之比較 37
第五章 時間延遲系統穩定分析比較 40
5.1時間延遲與系統模態特性之比較 40
5.1.1單自由度系統 40
5.1.2多自由度系統 44
5.2時間延遲對轉換函數及動態歷時影響之比較 45
5.2.1單自由度系統 45
5.2.2多自由度系統 46
第六章 結論與建議 48
參考文獻 50
表…………………………………………………………………….53
圖………………………………………………………………….69

1. Yao, J.T.P, “Concept of Structure Control”, Journal of the Structural Division, ASCE, Vol. 98, No. ST7, pp. 1567-1574, 1972.
2. Soong, T.T., Active Structural Control: Theory and Practice, John Wiley & Sons, Inc., New York, 1990.
3. Housner, G.W., et al, “Structural Control: Past, Present, and Future”, Journal of Engineering Mechanics, ASCE, Vol. 123, pp. 897-971, 1997.
4. Yao, J.T.P (ed.), “Structural Control”, Engineering Structures, Vol. 20, No. 3, pp. 133-237, 1998.
5. Kobori, T., Koshika, N., Yamada, K., and Ikeda, Y., “Seismic-response-controlled Structure with Active Mass Driver System. Part 1: Design”, Earthquake Engineering and Structural Dynamics, Vol. 20, pp. 133-149, 1991.
6. Kobori, T., Koshika, N., Yamada, K., and Ikeda, Y., “Seismic-response-controlled Structure with Active Mass Driver System. Part 2: Verification”, Earthquake Engineering and Structural Dynamics, Vol. 20, pp. 151-166, 1991.
7. Kose, I.E., Schmitendorf, W.E., and Yang, J.N., “ Active Seismic Response Control Using Static Output Feedback”, Journal of Engineering Mechanics, ASCE, Vol. 122, No. 1, pp. 651-659, 1996.
8. Wu, J.C., Yang, J.N., and Schmitendorf, W.E., “Reduced-order and LQR Control for Wind-excited Tall Buildings”, Engineering Structures, Vol. 20, No. 3, pp. 222-236, 1998.
9. Lin, C.C., Chung, L.L., and Lu, K.H., “Optimal Discrete-time Structural Control Using Direct Output Feedback”, Engineering Structures, Vol. 18, No. 6, pp. 472-482, 1996.
10. Chung, L.L., Lin, C.C., and Chu, S.Y., “Optimal Direct Output Feedback of Structural Control”, Journal of Engineering Mechanics, ASCE, Vol. 119, No. 11, pp. 2157-2173, 1993.
11. 朱世禹,“直接輸出回饋之主動結構控制”, 國立中興大學土木工程研究所碩士論文,1992.
12. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A., “State-space Solutions to Standard and Control Problems”, IEEE Transactions on Automatic Control, Vol. 34, No. 8, pp. 831-847, 1989.
13. Yang, C.D., and Yeh, F.B., Linear and Nonlinear Control - Game Theory Approach, 全華圖書, 1997.
14. Yaesh, I., and Shaked, U., “Minimum Entropy Static Output-Feedback Control with an -Norm Preformance Bound”, IEEE Transactions on Automatic Control, Vol. 42, No. 6, pp.853-858, 1997.
15. Skelton, R. E., Stoustrup, J., and Iwasaki, T., “The Control Problem Using Static Output Feedback”, International Journal of Robust and Nonlinear Control, Vol. 4, pp.449-455, 1994.
16. Gu, G., and Misra, P., “Disturbance Attentuation and Optimization with Linear Output Feedback Control”, Journal of Guidance, Control and Dynamics, AIAA, Vol. 17, pp.145-152, 1994.
17. Abdel-Rohman, M., “Time-Delay Effects on Actively Damped Structures”, Journal of Engineering Mechanics, ASCE, Vol. 113, No. 11, pp. 1709-1719, 1987.
18. Yang, J.N., Akbarpour, A., and Askar, G., “Effect of Time Delay on Control of Seismic-Excited Buildings”, Journal of Structural Engineering, ASCE, Vol. 116, No. 10, pp. 2801-2814, 1990.
19. Pu, J.P. and Kelly, J.M., “Active Control and Seismic Isolation”, Journal of Engineering Mechanics, ASCE, Vol. 117, No. 10, pp. 2221-2236, 1991.
20. Abdel-Mooty, M., and Roorda, J., “Time-Delay Compensation in Active Damping of Structures”, Journal of Engineering Mechanics, ASCE, Vol. 117, No. 11, pp. 2549-2570, 1991.
21. Agrawal, A.K., Fujino, Y., and Bhartia, B.K., “Instability Due to Time Delay and Its Compensation in Active Control of Structures”, Earthquake Engineering and Structural Dynamics, Vol. 22, pp. 211-224, 1993.
22. Inaudi, J.A. and Kelly J.M., “A Robust Delay-Compensation Technique Based on Memory”, Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 987-1001, 1994.
23. Lin, C.C., Chung, L.L., and Lu, K.H., “Direct Output Feedback Control of Discrete-Time Systems”, 12th International Conference on Structural Mechanics in Reactor Technology (SMiRT12), SD1K07/5, pp. 303-308, 1993.
24. Chung, L.L., Lin, C.C., and Lu, K.H., “Time-Delay Control of Structures”, Earthquake Engineering and Structural Dynamics, Vol. 24, pp. 687-701, 1995.
25. Zhang, L. Yang, C.Y., Chajes, M.J., and Cheng A.H-D., “Stability of Active-Tendon Structural Control with Time Delay”, Journal of Engineering Mechanics, ACSE, Vol. 119, No. 5, pp. 1017-1024, 1993.
26. Dyke, S.J., Spencer Jr., B.F., Quast, P., and Sain, M.K., “Role of Control-Structure Interaction in Protective System Design”, Journal of Engineering Mechanics, ASCE, Vol. 121, No. 2, pp. 322-339, 1995.
27. Lin, C.C., Sheu, J,F., Chu, S.Y. and Chung, L.L., “Time Delay Effect and Its Solutions in Direct Output Feedback Control of Structures”, Earthquake Engineering and Structural Dynamics, Vol. 25, pp. 547-559, 1996.
28. Zhou, K., and Doyle, J. C., Essentials of Robust Control, Prentice-Hall, Inc., New Jersey, 1998.
29. 陳宜生及劉書聲, 談談熵, 牛頓出版社, 1996.
30. Stoorvogel, A. A., “The Singular Minimum Entropy Control Problem ”, System & Control Letter, Vol.16, pp.411-422, 1991.
31. Levine, W. S., and Athans M., “On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems”, IEEE Transactions on Automatic Control, Vol. 15, pp.44-48, 1970.
32. 魏志揚,“ 主動控制系統之穩定與減振分析”, 國立中興大學土木工程研究所碩士論文, 1999.
33. Richter, S., Hodel, A. S., and Pruett, P. G., “Homotopy Methods for the Solution of General Modified Algebraic Riccati Equations”, IEE Proceedings-D, Vol. 140, No. 6, pp.449-454, 1993.
34. Wang, S. S., and Pan, C. T., “Homotopy Method for Solving Algebraic Riccati Equations”, IEE Proceedings-D, Vol. 136, No. 2, pp.68-72, 1989.
35. Soong, T.T., “State-of-the-Art and State-of-the-Practice of Structure Control Technology”, 地震工程暨耐震設計研討會(V) 國立中興大學土木工程系, pp. 6-1~6-35, 1998.
36. 潘銘棋, “ 直接輸出回饋之結構控制”, 國立中興大學土木工程研究所碩士論文, 2001.
37. D. Mustafa, K. Glover, and D. J. N. Limebeer, “Solutions to the general distance problem which minimize an entropy integral,” Automatica, vol. 27, pp. 193-199, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top