跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡坤峰
研究生(外文):Tsai Kun Feng
論文名稱:波浪-海底床-埋管交互作用機制之探討:三維有限元素分析模式
論文名稱(外文):Three-Dimensional Finite Element Modeling for Wave-Seabed Pipeline Interaction
指導教授:林義雄林義雄引用關係
指導教授(外文):Lin Yee Shown
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:西班牙文
論文頁數:63
中文關鍵詞:三維有限元素分析波浪-海底床-埋管交互作用
外文關鍵詞:Three-Dimensional Finite ElementWave-Seabed Pipeline Interaction
相關次數:
  • 被引用被引用:4
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文目的在建立波浪作用下土壤內埋管之三維有限元素分析模式,模式主要利用Biot’s 壓密理論、彈性力學之力平衡方程式及彈性下應力應變線性關係式,因波浪作用有週期性之特性先將時間變數自方程式及邊界條件分離,再利用Galerkin 法建立有限元素法模式進行分析。
於此一模式中,由波浪入射至分析區域所造成應力及應變影響亦包含於模式中,以此為基礎而舉實例作應力應變之模擬。並進一步探討在不同入射波浪角度、埋管深度、土壤滲透係數、以及埋管半徑所造成波浪、海底床及海底埋管三者間交互作用力學機構之影響,以作為工程設計參考之用。
The phenomenon of wave-seabed-pipeline interaction has attracted attentions from coastal engineers and marine geotechnical engineers in recent years. However, most previous investigations have been only limited to two-dimensional cases, any directional wave forced on buried pipeline cannot be take account. Furthermore, the boundary between soil buried pipeline assumed perfect bound, which is no match with the actual conditions.
In this study, we will establish a three-dimensional finite element model to investigate the basic mechanism of wave-seabed-pipeline interaction. In the model, the boundary between soil and pipeline will be considered and with the concept of contact mechanics. Based on the new three-dimensional finite element model, Effects of wave characteristics (including water depth, wave height, wave period and wave direction), soil behavior (including quasi-static and dynamic soil behavior) and properties of the pipeline (such as dimensional of pipeline and size of pipeline etc) on the wave-induced soil response will be examined, as well as the stresses within the caisson. All these will provide a guide for engineering practice.
目錄
摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅷ
第一章: 前言 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究目的及方法 3
第二章: 有限元素分析模式建立 5
2-1 分析區域及假設條件 5
2-2 土壤之有限元素分析模式 6
2-3 邊界狀況 8
2-4 有限元素分析模式建立 11
2-5 分析長度範圍決定及孔隙水壓作用之處理 17
第三章: 數值結果和討論 21
3-1 實例分析 21
3-2 波浪以不同角度入射之影響 22
3-3 埋管深度之影響 23
3-4 土壤狀況(滲透係數)之影響 23
3-5 埋管半徑之影響 24
第四章: 結論 53
參考文獻 55
附錄 57
1. Yamamoto, T., Koning, H. L., Sellmejjer H. and Hijum, E. V., 1978, “On the response of a poroelastic bed to water waves, ”Journal of Fluid Mechanics, Vol. 87, pp. 193-266
2. Yamamoto, T. and Turgut, A, 1988, “ Acoustic wave propagation through porous media with arbitarary por size distributions, “ Journal of Acoustical Society of America, Vol. 83, No. 5, pp. 1744-1751.
3. Yamamoto, T., Trevorrow, M. V., Badiey, M. and Trugut, A., 1989, Determination of the seabed porosity and shear modulus profiles using a gravity wave inversion, “Geophysical Journal International, Vol. 98,No. 1,pp. 177-182
4. Nye, T. and Yamamoto, T., 1994, “Field test of buried ocean-wave direction spectrometer system,”Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 120, No. 5, pp.451-466.
5. Barends, F. B. J. and Siperenburg, S. E. J., 1991, Interaction between Ocean Waves and Sea-Bed,Geo-Coast’91, Yakohama, 1091-1108.
6. Biot, M. A.,1941, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155-164.
7. Jeng, D. S., 1996, Wave-induced Liquefaction potensional at the tip of breakwater, Applied Ocean Research, 18(5), 229-241
8. Lin, Y. S. and Jeng, D. S., 1996, “Response of Poro-elatic seabed to 3-d wave system: a finite element analysis, “Coastal Engineering in Japan, Vol.39, No. 2,pp.195-182.
9. Jeng, D. S. and Lin, Y. S., 1996, “Finite element model for water wave-soil interaction,” Soil Dynamics and Earthquake Engineering, Vol. 15, pp.283-300.
10. Lin, Y. S. and Jeng, D. S., “ The effects of variable permeability on the wave-induced seabed response,” Vol. 24, No. 7,pp. 623-643.
11. Jeng, D. S. and Lin, Y. S., “Non-Linear wave-induced response of porous seabed: a finite elment analysis, “International Journal for numerical and analytical Method in Geomechanics, Vol. 21, pp. 15-42.
12. Putnam, J. A., 1949, “Loss of wave energy due to percolation in a permeable sea bottom, “ Trans. Am. Geophys. Union, Vol. 30, pp. 407-419.
13. Mcdougal, W. G.. Davidson, S. H., Monkmeyer, P. L. and Sollitt, C. K., 1988, “Wave-induced forces on buried pipelines, “J, Waterway Port Coast. Ocean Engng Div., ASCE, Vol. 114, pp. 220-236.
14. Lennon, G.. P., 1985, “Wave-induces forces on buried pipelines, “ J. Waterway Port Coast. Ocean Engng Div., ASCE, Vol. 111, pp.511-524.
15. Magda, W., 1996, “Wave-induced uplift force acting on a submarine buried pipeline: finite element formulation and verification of computation, “Computers and Geotechics, Vol. 19, No. 1, pp. 47-73.
16. Magda, W., 1997, “Wave-induced uplift force acting on a submarine buried pipeline in a compressible seabed, “Computers and Geotechics, Vol. 24, No. 6, pp. 551-576.
17. Lin,Y. S. and D. S. Jeng,1999, Wave-induced pore pressure around a buried pipeline in Gibson Soil: Finite element analysis, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.23, 1559~1154.
18. Lin,Y. S. and Jeng, D. S. 1999, Pore pressures on a submarine pipeline in a cross-anisotropic non-homogenous seabed under wave loading, Canadian Geotechnical Journal, 36(accepted)
19. Lin,Y. S. and Wang, X. and Jeng, D. S. 2000, Effects of a cover layer on wave-induced pore pressure around a buried pipe in an anisotropic seabed, Ocean Engineering, Vol. 26, 43-64. (EI, SCI)
20. 張淇銘, 林義雄, 鄭東生,2000 ,波浪作用下土壤埋管之有限元素分析模式, 八十八年電子計算機於土木水利工程應用研討會,pp. 141~150.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top