跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/04 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱培智
研究生(外文):Pei-Chi Chiu
論文名稱:AISI開口斷面翹曲常數之數值化分析
論文名稱(外文):Numerical Evaluations for Warping Constants of AISI Open Sections
指導教授:呂東苗
指導教授(外文):D. M. Lue
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:282
中文關鍵詞:美國鋼鐵協會開口薄壁斷面剪力中心單位翹曲法化單位翹曲翹曲常數
外文關鍵詞:American Iron & Steel Instituteopen thin-walled sectionshear centerunit warpingnormalized unit warpingwarping constant
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
九二一集集大地震發生之後,儘管鋼結構具有較佳的抗震能力,但是不難從許多災區中發現鋼構造物的倒塌。由於這些倒塌的鋼結構大多是使用熱軋型鋼,而熱軋型鋼本身的自重較大,所以,一旦遭受地震作用時便會產生較大的慣性力,因此導致結構物損壞的機率增加,有鑑於此,假使能大量的使用冷軋鋼,藉著冷軋鋼之自重小、可回收性高等優點,相信能大幅度的改善鋼結構因強震而損壞的情形。
冷軋鋼中常見之開口斷面(open section)構件受到扭力作用時應考慮純扭曲應力(pure torsional shear stress)與翹曲應力(warping stress)之產生,而翹曲應力則包括翹曲剪應力(warping shear stress)與翹曲正向應力(Warping normal stress),其中翹曲剪應力之分析所面臨之困難為翹曲常數(warping constant, Cw)之計算。雖然許多常見開口斷面之翹曲常數已有現成公式可用,但是這些現成公式一般而言相當複雜。開口斷面翹曲常數之取得,必須先計算斷面剪力中心之位置,再依此計算翹曲常數,其過程牽涉複雜之積分運算,並不容易。
本研究以一階分析(first-order analysis)為基礎,推導翹曲常數理論公式之積分式,考慮斷面由薄壁板元素(thin-walled plate element)所組成,將理論積分式改成數值公式,再將數值公式編寫成Visual Fortran電腦程式,由電腦執行開口斷面翹曲常數之運算工作。所有電腦計算結果將與現有公式計算結果作一比較,並提供AISI / LRFD Cold-Formed Steel Manual[1](P.Ⅴ—26∼34)所列舉斷面之翹曲常數值Cw計算流程及結果供業界參考。

Steel structures are mostly made of hot-rolled steels which have larger self-weight as compared with cold-formed steels. Rolled steel structures will, therefore, have a larger inertia force created when structures are subjected to a seismic force. Although a cold-formed steel has a better performance than a rolled steel when structure is subjected to later forces including earthquake and wind , the evaluation of cold-formed steel structures is more complicated than rolled steel structure.
When a cold-formed steel member is subjected to torsion, the stress analysis of section includes pure torsion stress and warping stresses which are composed of warping shear and warping normal stresses. The evaluation of pure torsion stress is quite straightforward and is well defined. However, the analysis of warping shear stress is not an easy task for general practicing engineers. The difficulty comes from the evaluation of warping constant (Cw) of open section. Although the formulas of warping constant are available for many practical sections, the given formulas are written in quite complicated forms. The calculation of warping constant, which includes the locate the shear center of section and the calculation of warping constant, is not a routine process and is a tough task for most practicing engineers.
This study intends to obtain the theoretical formulas derived based on first-order analysis. The theoretical formulas are obtained and expressed in terms of mathematical integration. Considering the fact that the section is made of thin-walled plate elements, the theoretical formulas can be written in terms of numerical expressions. The numerical expressions are then rewritten in terms of Fortran language. The work of warping constant evaluation is finally carried out by computer. The computer-assisted results of warping constants are compared with the known ones provided by the current AISI / LRFD cold-formed steel manual. The accuracy of the results is quite encouraged.

摘要…………………………………………………………………… i
目錄…………………………………………………………………… iii
表目錄………………………………………………………………… v
圖目錄………………………………………………………………… xii
符號說明……………………………………………………………… xiv
第一章 緒論 ………………………………………………………… 1
1.1前言… …………………………………………………………… 1
1.2文獻回顧 ………………………………………………………… 1
1.3研究動機… ……………………………………………………… 2
1.4研究方法及目標 ………………………………………………… 3
第二章 開口斷面翹曲常數之理論與數值公式…………………… 10
2.1前言……………………………………………………………… 10
2.2斷面形心………………………………………………………… 11
2.3斷面剪力中心…………………………………………………… 11
2.4翹曲變形………………………………………………………… 17
2.5翹曲常數之理論推導…………………………………………… 20
2.6翹曲常數之數值公式推導……………………………………… 25
2.7範例……………………………………………………………… 29
第三章 開口斷面翹曲常數之數值化計算………………………… 109
3.1 槽形冷軋鋼斷面翹曲常數之計算…………………………… 112
3.2 C形冷軋鋼斷面翹曲常數之計算……………………………… 121
3.3 Z形冷軋鋼斷面(不含加勁翼板)翹曲常數之計算…………… 132
3.4 Z形冷軋鋼斷面(含加勁翼板)翹曲常數之計算……………… 140
3.5 帽形冷軋鋼斷面翹曲常數之計算…………………………… 151
3.6 等角冷軋鋼斷面(不含加勁肢材)翹曲常數之計算………… 162
3.7 等角冷軋鋼斷面(含加勁肢材)翹曲常數之計算…………… 170
3.8 雙槽形冷軋鋼斷面翹曲常數之計算………………………… 179
3.9 雙C形冷軋鋼斷面翹曲常數之計算…………………………… 190
第四章 Fortran程式撰寫與使用說明…………………………… 202
4.1 程式撰寫說明………………………………………………… 202
4.2 程式使用說明………………………………………………… 202
4.3 程式流程圖…………………………………………………… 203
4.4 例題說明……………………………………………………… 204
第五章 數值公式整理與結果比較………………………………… 228
5.1 翹曲常數值之電腦化分析…………………………………… 228
5.1.1 翹曲常數之理論公式……………………………………… 228
5.1.2 翹曲常數之數值公式……………………………………… 228
第六章 結論………………………………………………………… 244
參考文獻…………………………………………………………… 246
附錄A 公式推導…………………………………………………… 249
附錄B FORTRAN程式Source Code………………………………… 259

1.American Iron and Steel Institute (1991),Load and Resistance Factor Design For Cold-Formed Steel Structure Members,1991 Edition, AISI, Washington, DC.
2.Tony Lue and Duane S. Ellifritt (1993), "The Warping Constant for the W-Section with a Channel Cap," Engineering Journal, AISC, First Quarter, pp.31-33.
3.Duane S. Ellifritt and Dung-Myau Lue (1998), "Design of Crane Runway Beam with Channel Cap," Engineering Journal, AISC, Second Quarter, pp.41-49.
4.Wei-Wen Yu (1991), "Cold-Formed Steel Design," Second Edition, A Wiley-Interscience Publication, New York, pp.522-540
5.T. V. Galambos (1968), “Structural Members and Frames,” Prentice-Hall, Englewood Cliffs, New Jersey, pp. 80-158.
6.C. P. Heins (1975), “Bending and Torsional Design in Structural Members,” Lexington Book Co., Lexington, MA.
7.Friedrich Bleich (1952), “Buckling Strength of Metal Structures,” McGraw-Hill Book Company, New York, pp. 104-123.
8.R. A. Hechtman and J. M. Hattrup (1955), "Lateral Buckling of Rolled Steel Beams, "Journal of the Engineering Mechanics Division, ASCE, Vol. 81, No. 797, pp.797-830.
9.J. W. Clark and H. N. Hill (1960), "Lateral Buckling of Beams," Journal of the Structural Division, ASCE, Vol. 86, No. ST7, pp.175-196.
10.G. J. Hancock (1978), "Local Distortion and Lateral Buckling of I-Beams," Journal of the Structural Division, ASCE, Vol. 104, No. ST11, pp.1787-1800.
11.M. Kubo and Y. Fukumoto (1988), " Lateral Torsional Buckling of Thin-Walled I-Beams," Journal of the Structural Division, ASCE, Vol. 114, No. ST 4,
pp. 841-855.
12.Y. L. Pi. and N. S. Trahair (1992) " Prebuckling deflections and lateral buckling theorem " Journal of the Structural Division, ASCE, Vol. 118, No. 11,
pp. 2946-2966.
13.J. M. Anderson and N. S. Trahair (1972), "Stability of Monosymmetric Beams and Cantilever," Journal of the Structural Division, ASCE, Vol. 98, No. ST1,
pp. 269-286.
14.S. Kitipornchai and N. S. Trahair (1980), "Buckling Properties of Mono-symmetric I-Beam," Journal of the Structural Division, ASCE, Vol. 106, No. ST5, pp. 941-957.
15.D. A. Nethercot (1983), "Elastic Lateral Buckling of Beam," Beams and Beam Columns-Stability in Strength (ed. R. Narayanan), Barking, Essex, England: Applied Science Publishers.
16.S. Kitipornchai , Chien Ming Wang,and N. S. Trahair (1986),"Buckling of Monosymmetric I-Beam Under Moment Gradient," Journal of Structural Engineering, ASCE, Vol. 112, No. 4, pp.781-799.
17.Chien Ming Wang and S. Kitipornchai (1986), "Buckling of Monosymmetric I-Beam Under Moment Gradient," Journal of Structural Engineering, ASCE, Vol. 112, No. 4, pp.781-799.
18.S. Kitipornchai and A. D. Chung (1987)," Inelsatic Buckling of Welded Monosymmetric I-Beam, " Journal of Structural Engineering, Vol.113, No. 4, pp.740-756.
19.D. S. Ellifritt , G. Wine , T. Sputo,and S. Samuel (1992), "Flexural Strength of WT Sections," Engineering Journal, AISC, Second Quarter, pp.67-74.
20.American Institute of Steel Construction (1994), Torsional Analysis of Structural Steel Members, Second Edition, AISC, Chicago, Illinois.
21.N. S. Trahair (1977), "The Behavior and Design of Steel Structures," First Edition, A Division of John Wiley and Sons, New York, pp.283-316.
22.A. C. Ugural (1987) "Advanced Strength and Applied Elasticity," Second Edition, Elsevier, New York, pp.445-457.
23.J. M. Gere and S. P. Timoshenko (1984), “Mechanics of Materials”, Wadsworth, Inc., Belmont, California, Chap. 9.
24.G. Charles Salmon and E. John Johnson (1994), "Steel Structures: Design and Behavior," Emphasizing Load and Resistance Factor Design, Fourth Edition, pp.484-542.
25.C. F. Kollbrunner and K. Basler (1969), “Torsion in Structures,” Springer-Verlag, New York, pp. 96-130.
26.N. S. Trahair (1993), "Flexural-Torsional and Buckling of Structures," First Edition, CRC Press, pp.304-356.
27.賴亮宇 (1999) "組合單對稱樑之斷面挫曲常數",國立中興大學土木工程學系碩士論文.
28.黃宗勇 (2001) "開口薄壁斷面翹曲常數之電腦化分析",國立中興大學土木工程學系碩士論文.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top