(3.237.97.64) 您好!臺灣時間:2021/03/03 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許鎮鵬
研究生(外文):Cheng-Peng Hsu
論文名稱:土壤有機質轉化特性分析
論文名稱(外文):Analysis for transformation characteristic of soil organic matter
指導教授:林正鈁林正鈁引用關係
指導教授(外文):Chen-Fong Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:109
中文關鍵詞:土壤有機質特徵值特徵向量權重值
外文關鍵詞:soil organic matterEigenvalueweighting values of eigenvector
相關次數:
  • 被引用被引用:3
  • 點閱點閱:324
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
土壤中有機質之含量是評估地力的重要指標之一,而其長期分解趨勢及相關機制一向是土壤研究者的重要課題。如何以現有土地利用下的有機質含量預知最終可能的平衡含量及所需平衡時間是解決此一問題的方法之一。本研究引用特徵值與特徵向量的觀念以及修改碳轉化模式來探討長期7種不同施肥處理且水旱輪作系統下,土壤有機質的變化趨勢。其中,將碳轉化模式的模擬分成兩種不同的週期,分別是依照年度與栽種期而劃分。並在以栽種期為週期之模式中加入作物根影響土壤有機質累積的機制。然後再分別對兩模式作參數鑑定與動態模擬。最後,以年度為週期之模式在參數鑑定後,將其碳轉化方程式線性化為平衡模式,用來比較動態模式與平衡模式對預估平衡含量的差異。
研究結果顯示,矩陣構成時段內有機質含量測值所組成的數據方陣,其主特徵值可代表7種不同施肥處理之土壤有機質的共同轉化趨勢。而特徵向量權重值則可反映各施肥處理間採樣樣品平均值之比例關係,且此關係隨時間的延續依然存在。碳轉化模式分為兩種週期模擬土壤有機質動態達穩定時,兩種週期間各施肥處理之平衡順序有極顯著相關。而各添加有機質處理的最終穩定含量大小順序為泥炭>堆肥>綠肥>化肥>無施肥。因此使用何種週期模擬則可依所需的目標或收集資料的多寡來決定。將動態模式轉化為平衡式對各施肥處理之平衡順序亦有極顯著相關,這說明計算較方便之平衡式可取代動態模式之預估值。土壤有機質達穩定所需的時間則依不同週期模擬方法與對穩定所採取的定義不同而有明顯的差異。根據上述結果,本研究所提出之三種分析方法皆可有效掌握土壤有機質的變動特徵,且反應出不同土地利用型態之有機質穩定趨勢。
Content of soil organic matter is one of the important indicators in evaluation of soil fertility. The decomposition processes and mechanisms of soil organic matters have been one of the main researches for soil scientists. One of the topics is to know the soil organic matter content in equilibrium and how many years it will achieve under present land use. This study applied the concept of eigenvalue and eigenvector and modified a transformation model of organic carbon to analyze the transformation of soil organic matter for the experiments under paddy-upland crop rotations. The experiments had 7 treatments with long-term application of organic matter with different decomposition rate. Among the total, we separated transformation model into two different time sequence to identify the parameters and run the simulations respectively. One was for annual simulation; the other separated a year into four periods according to the sequence of autumn maize —fallow -spring rice -fallow rotations. In the four periods of simulation, we added the mechanism of roots of crops to influence the accumulation of soil organic matter. After identified the parameters for the annual simulation, we compared the eventual equilibrium tendencies of soil organic carbon content of the dynamic model with the equilibrium model transferred from linear transformation function of organic carbon.
The result showed that the soil organic matter in the same plot with 7 treatments shared a corporate transformation ratio, as known as the major eigenvalue, which was derived from the square matrix constructed by the measured data of soil organic matter content. The weighting values of eigenvector can refer to the simple ratios of the averages of sampled data between 7 treatments, and the relationship still exist with successive time period. When the final equilibrium tendencies of soil organic matter content was obtained by two models, the relationship between the orders of the equilibrium content of 7 treatments were significant. At equilibrium, the contents of soil organic matter follows the order (from high to low) of treatments amended with peat, compost, green manure and chemical fertilizers respectively. The relationship between the orders of the equilibrium content of 7 treatments calculated by dynamic model and equilibrium model was also significant. The years required to reach equilibrium of soil organic matter content were very different with different time sequence and the definition of equilibrium. It was concluded that three analytic methods provided in this study could usefully grasp the changes of soil organic matter, and could indicate the eventual equilibrium tendencies of soil organic matter contents with difference land use.
目錄
壹、前言……………………………………………………………….. 1
貳、文獻回顧………………………………………………………….. 3
一、土壤有機質的來源與組成………………………………….. 3
二、土壤有機物的累積與分解………………………………….. 5
三、土壤有機質達平衡時之含量與所需時間………………….. 6
四、土壤有機物質的合適含量及台灣土壤有機質含量現況….. 8
五、水旱輪作制度對土壤有機質含量的影響………………….. 9
六、有機質轉化模式之發展…………………………………….. 10
參、原理與方法……………………………………………………….. 17
一、田間資料的收集…………………………………………….. 17
二、數據的系統化與分析─矩陣特徵值之原理與應用……….. 26
三、碳轉化模式之引用與修飾………………………………….. 40
肆、結果與討論……………………………………………………….. 56
一、特徵值與特徵向量………………………………………….. 56
(一)、驗證主特徵值與伴隨主特徵值之特徵向量權重對有機質的關係……………………………………… 56
(二)、不同維度矩陣的分析……………………………… 60
(三)、連續時段主特徵值變化與全區有機碳平均含量關係之探討…………………………………………... 62
(四)、連續時段特徵向量權重值變動與矩陣列平均關係之探討………………………………....................... 64
(五)、矩陣中,時間為列、重複數為行的分析…………… 68
二、兩種不同時序模式的參數鑑定與動態模擬……………….. 73
〈一〉、模式一的參數鑑定與動態模擬…………………… 73
(二)、模式二的參數鑑定與動態模擬…………………… 78
三、模式一的兩種不同線性化平衡模式推估有機質之穩定趨向…………………………………………………………… 88
(一)、設變動斜率為零,穩定土壤有機質的預估……….. 88
(二)、轉化方程式藉歐拉法轉成線性特徵向量方程式求取平衡值…………………………………………… 89
伍、結論……………………………………………………………….. 96
陸、參考文獻………………………………………………………….. 98
表次
一、耕種前試驗區土壤的各項分析值…………………………… 22
二、0─15公分內,七種不同施肥處理下,土壤有機態碳含量…… 23
三、不同栽種時期,玉米和水稻根之有機碳含量測值…………… 25
四、84年與85年,七種不同施肥處理下,土壤有機態碳含量…… 31
五、表四構成之數據矩陣,列互換後所有主特徵值與伴隨主特徵值之特徵向量權重值的分布範圍表……………………… 59
六、不同維度矩陣之主特徵值與特徵向量以及特徵向量與列平均之相關係數………………………………………………… 61
七、連續時段,矩陣之行列為時間與處理其特徵向量權重值之修正………………………………………………………….... 65
八、以時間為列(八個採樣時間),八個重複採樣點為行構成矩陣
(以對照組數據為例)………………………………………….. 70
九、連續時段下,部分矩陣之特徵向量權重值(以對照組為例)……………………………………………………………... 71
十、連續時段下,部分矩陣之改良特徵向量權重值(以對照組為例)……………………………………………………………... 72
十一、模式一之參數鑑定值………………………………………….. 76
十二、模式一對土壤有機質達平衡所需時間與穩定含量之預估….. 77
十三、模式二,七種施肥四種耕種期的實測值與模擬值間相關係數……………………………………………………………… 84
十四、模式二對土壤有機質達平衡所需時間與穩定含量之預估….. 86
十五、兩動態模式預估土壤有機質穩定值之比較………………….. 87
十六、土壤有機質達平衡時,動態模式與平衡模式及特徵樣量權重值之相關比較……………………………………………… 92
十七、模式一之平衡值與轉移矩陣特徵向量之相關性…………….. 93
圖次
一、田間試驗處理平面圖………………………………………….. 21
二、有機碳平均含量與權重值之關係圖………………………...... 33
三、特徵值之Gershgorin定理示意圖……………………………... 38
四、表四所構成之數據矩陣的特徵值Gershgorin定理…………... 39
五、CERES-玉米生長模式中土壤碳氮轉化次模式示意圖……… 42
六、連續時段之特徵值變化與其有機碳含量關係圖…………….. 63
七、連續時段下,修正特徵向量權重值與列平均之相關圖……… 67
八、自84年秋作玉米開始種植到90年水稻收獲後之土壤有機態碳的動態模擬結果與相關係數…………………………… 75
九、土壤有機態碳對日期圖 (以CK組為例)……………………. 80
十、以Logistic方程式模擬玉米根重……………………………… 81
十一、以Logistic方程式模擬水稻根重……………………………… 82
十二、模式二土壤有機態碳模擬值與實測值之比較(以對照組為例)……………………………………………………………... 83
十三、長期模擬下,土壤有機質的變動趨勢圖……………………… 85
十四、修正過之特徵向量權重值隨時間的變動趨勢圖…………….. 94
十五、改良過之特徵向量權重值隨時間的變化圖………………….. 95
王西華、鄭正勇、章莉菁、李勝隆、林碧霞、凌美月。1987。台灣地區有機質肥料與既有堆肥資源調查與研究。行政院科技顧問組委託調查研究計畫報告書。
王敏昭、陳立夫。1994。台灣幾種農耕土類腐植質之定年研究(未發表)。
王敏昭。1998。土壤生態變異對土壤溶液有機碳境況之改變。土壤與環境1:247-268。
林正 、劉滄棽、胡苔莉。1987。污泥有機質在土壤中轉化之模式研究。廢水處理技術研討會論文集。
林正 、蔡政廷、莊作權。1989。機制性玉米生長模式調適之研究。中華民國農學團體七十八年聯合年會特刊。pp.101-129。
林正 、林欣華、劉慧甄。1995a。土壤有機質分解聚積之模擬。有機質肥料合理施用技術研討會專刊。84年5月11-12日,台灣,台中。p. 84-94。
林正 、陳琦玲、姚蘭香。1995b。台灣地區玉米生產潛力分析。中華農學會報172:24-54。
林正 、吳宗澤、林麗惠、陳琦玲。1998。土壤有機質降解過程之過度分解現象研究。土壤與環境1:43-49。
林家棻。1967。台灣農田肥力測定。台灣省農業試驗報告第二十八號。
林家棻。1982。本省農田肥力之變遷。台灣省農業試驗所民國七十年年報。p. 69-70。
林家棻。1983。台灣省土壤肥力能限分類規範調查研究。台灣省農業試驗所民國七十一年年報。p. 77-80。
吳聰賢。1993。永續農業之發展策略。國立台灣大學農業推廣學報。10:1-14。
高德錚。1989。農藝作物有機栽培法探討。有機農業研討會專集。台中區農業改良場出版。p. 117-132。
張守敬。1950。台灣省土壤肥力概述。台灣省農業試驗報告第七號。
張順興。1994。兩種土類土壤腐植質組成之平均年齡與定性及定量特性。國立中興大學土壤學研究所碩士論文。
郭鴻裕、朱戩良、江志峰、吳懷國。1995。台灣地區土壤有機質含量及有機資材之施用狀況。有機質肥料合理施用技術研討會專刊。p. 72-83。84年5月11-12日,台灣,台中。
陳大新。1991。矩陣理論。台北。亞東書局。
陳立夫、王敏昭。1992a。台灣兩種主要農耕土壤腐植酸之光譜及其他分析特性。中國農業化學會誌30(1):33-42。
陳立夫、王敏昭。1992b。台灣兩種主要農耕土壤黃酸之光譜及其他分析特性。中國農業化學會誌30(3):441-453。
陳琦玲、連深。1995。台灣若干土壤有機質分解、聚積之模擬及有機質肥料施用基準之試定。有機質肥料合理施用技術研討會專刊。84年5月11-12日,台灣,台中。p. 171-190。
陳琦玲。1998。土壤環境中碳與氮轉化之模式解析研究。國立中興大學土壤環境科學系博士論文。
陳尊賢。1995。永續農業中土壤品質之評估與土地管理之策略。永續農業研究與推廣之進展研討會專集。p. 16-33。83年11月23-25日,台灣,台中。
陳尊賢、王銀波、鄭詩華、鍾仁賜、簡宣裕、蔡宜峰、黃盛洛、蔡呈奇、鍾欣燁、吳茂毅。1998。有機堆肥施用對土壤生態環境影響及其利用之訐估與規劃。行政院農業委員會研究計畫報告書。
劉滄棽。1987。有機殘質在土壤中轉化模式之研究。國立中興大學土壤學研究所碩士論文。
蔡紹謙。1978。固有值固有向量理論基礎與應用。私立輔仁大學出版社。
楊懷年。1992。線性代數。台北。華泰書局發行。國立編譯館主編。
戴久永。1985。線性代數導論。台北。國立編譯館。台灣東華書局出版。
謝順景。1994。台灣之作物永續性生產體系。中華農學會報新167:1-24。
薛惠文。2000。土壤有機質含量變動分析。國立中興大學土壤環境科學系碩士論文。
Allison, F.E.(ed.). 1973. Soil organic matter and its role in crop product. Dev. Soil Sci. 3. Elsevier, Amsterdam.
Batjes, N.H. 1992 Organic matter and carbon dioxide. pp. 97-148. In: Batjes, N.H. and Bridges, E.M. (Ed.) A review of soil factors and processes that control fluxes of heat, moisture, and greenhouse. Technical paper 23. International Soil Reference and Information Centre, Wageningen.
Berman, A., and R.J. Plemmons, 1994. Nonnegative matrices in the mathematical science. The Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
Bhaumik, H.D and F.E. Clark. 1974. Soil moisture and microbiological activity. Soil Sci. Soc. Am. Proc. 12:234-238.
Bickerton, D. 1988. Measurement of soil aggregate stability by wet sieving with results from tillage experiments. Scottish Centre of Agric., UK 12:16.
Brady, N.C. (ed.). 1974. The nature and properties of soils. p.693. Macmillan, New York, USA.
Bremmer, J.M., and C.S. Mulvaney. 1982. Nitrogen-Total. P. 595-624. in A.L. Page et al. (ed.) Methods of soil analysis. Part2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Broadbent, F.E. and T. Nakashima. 1974. Mineralization of carbon and nitrogen in soil amended with C-13 and N-15 labeled plant material. Soil Sci. Soc. Am. Proc. 38:313-315.
Campbell, C.A. 1978. Soil organic carbon, nitrogen, and fertility. pp.173-272. In: M. Schnitzer and S.U. Khan(ed.) Soil organic matter. Elsevier Scientific Publ. Co., Amsterdam.
Chen, Z.S. and Z.Y. Hseu. 1997. Total organic carbon pool in soils of Taiwan. Proceedings of the National Science Council. Part B: Life Sciences. Vol.21, No.3. pp.120-127. ROC.
Gabrielle, B. and L. Kengni. 1996. Analysis and field-evaluation of the CERES models’ soil components: nitrogen transfer and transformations Soil Sci. Soc. Am. J. 60:142-149.
Colberg, P.J. 1988. Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. pp.333-372. In: A.J.B. Zehnder (ed.) Biology of anaerobic microorganisms . Wiley Interscience, New York.
Collins, H.P., L.F. Elliott, R.W. Rickman, D.F. Bezdicek and R.I. Papendick. 1990. Decomposition and interactions among wheat residue components. Soil Sci. Soc. Am. J. 54:780-785.
de Ploey, J. and Poesen, J. 1985. Aggregate stability, runoff generation and interrill erosion. pp.99-120. In: K. S. Richards, R. R. Arnett and S. Ellis (ed.) Geomorphology and soils, G. Allen & Unwin, London.
Felbeck, G.T., Jr. 1965. Structural chemistry of soil humic substances. Adv. Agron. 17:327-368.
Greenland, D.J., D. Rimmer and D. Payne. 1975. Determination of the structural stability class of English and Welsh soils using a water coherence test. J. Soil Sci. 26:294-303.
Gregorich, E.G., D.A. Angers, C.A. Campbell, M.R. Carter, C.F. Drury, B.H. Ellert, P.H. Groenevelt, D.A. Holmstrom, C.M. Monreal, H.W. Rels, R.P.Voroney and T.J. Vyn. 1995. Changes in soil organic matter. pp.41-50. In: D.F. Acton and L.J. Gregorich (ed) The health of our soils: Toward sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada.
Guerra, A. 1994. The effect of organic matter content on soil erosion in simulated rainfall experiments in W.Sussex, Uk. Soil use and management 10:60-64.
Herman, W.A., McGill, W.B., and Dormaar, J.F. 1977. Effects of initial chemical composition on decomposition of roots of three grass species. Can. J. Soil Sci. 57:205-215.
Houot, S.,R. Chaussod, C. Hounemenou, E. Barriusos and S. Bourgeoius. 1991. Differences induced in the soil in the soil organic matter characteristics and microbial activity by various management practices in long-term field experiments. pp.435-443. In: J. Berthelin (ed.) Diversity of environmental biogeochemistry. Elsevier, Amsterdam.
Hsieh, Y.P., M.D. Che and C.L. Liu. 1980. Effect of land disposal of sewage sludge on soil environmental qualities. I .Organic matter decomposition. Natl. Sci. Counc. Monthly, ROC 8:903-912.
Hsieh, Y.P., L.A. Douglas and H.L. Motto. 1981. Modeling sewage sludge decomposition in soils: I. Organic carbon transformation.J.Environ.Qual.10:54-59.
Hunt, H.W. 1977. A simulation model for decomposition in grasslands. Ecology. 58:469-484.
Janzen, H.H. 1991. Fertilization promotes soil organic matter. Alberta Research. p10.
Jenkinson D.S. and A. Ayanaba. 1977. Decomposition of carbon-14 labeled plant material under tropical conditions. Soil Sci. Soc. Am. J. 41:912-915.
Jenkinson, D.S., and J.H. Rayner. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123:298-305.
Jenkinson, D.S. 1990. The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society. B 329. pp:361-368.
Jenkinson, D.S., N.J. Bradbury and K. Coleman. 1994. How the Rothamsted classical experiments have been used to develop and test models for the turnover of carbon and nitrogen in soil. pp.117-138. In: R.A. Leigh and A.E. Johnston (ed.) Long-term experiments in agricultural and ecological sciences. University Press, Cambridge U.K.
Jenny, H. (ed.) 1941. Factors of soil formation. McGraw-Hill, New York.
Jones, C.A. and J.R. Kiniry (ed.) 1986. CERES-Maize : a simulation model of maize growth and development. Texas A & M University Press College Station, Texas USA.
Kirkham, D. and Bartholomew, W.V.. 1955. Equations for following nutrient transformation in soil, utilizing tracer data II. Soil Sci. Soc. Am. Proc. 19: 189-192.
Kononova, M.M. 1961. Soil organic matter. P.450. Pergamon, New York, USA.
Larson, W., C. Clapp, W. Pierre, and B. Morachan. 1972. Effects of increasing amounts of organic residues on continuous corn II. Organic carbon, nitrogen, phosphorus and sulfur. Agron. J. 64:204-208.
Larson, W.E. and C.E. Clapp. 1984. Effects of organic matter on soil physical properties. pp.363-385. In: Organic matter and rice. IRRI, Philippines .
Lin, C.F., T.S. Liu, and T.L. Hu. 1987. Assembling a model for organic residue transformation in soils. Proceedings of the National Science Council. Part B: Life Sciences. Vol.11, No.2. pp.175-186. April 1987, Taipei, Taiwan, R.O.C.
Lin, C.F. 1990. Model development for improved nitrogen efficiency. Co-ordination of a joint R.S.A. and R.O.C. research project. Dept. of Soil Sci. National Chung-Hsing Universtiy, Taichung, Taiwan, R.O.C.
Lucas, R.E., Holtman, J.B. and Connor, L.J. 1977. Soil carbon dynamics and cropping practices. Agriculture and Energy. Academic Press Inc., New York.
Maeda, K. and H. Shiga. 1978. Year-long decomposition processes of various organic materials in a lowland field. J. Sci. Soil Manure, Japan 49:455-460. (In Japanese)
Martin, J.P. and D.D. Focht. 1977. Biological properties of soils. pp.115-172. In: L.F. Elliott et al. (ed) Soils for Organic Wastes and Waste Waters. SSSA, ASA, CSSA, Madison, USA.
Matus, F.J. and J. Rodriguez. 1994. A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input. Plant Soil. 162:259-271.
Menzel, R.G. 1991 Soil science: the environmental challenge. Soil science 151:24-29.
Miller, R.H. and D.O. Johnson. 1964. The effect of soil moisture tension on carbon dioxide evolution, nitrification and nitrogen mineralization. Soil Sci. Soc. Am. Proc. 28:644-647.
Nagy, J., L. Huzsvai, K. Peto, and G, Kovacs. 1995. Validation of crop models based on field experiments for environmental education. pp.409-419. In: C. Giupponi et al. (ed.) Modeling the fate of agrochemicals and fertilizers in the environment. Proc. Worksh. Eur. Soc. Agron. Unopress, Padova, Italy.
Nelson, J.L., L.C. Boawn, and F.G. Viets, Jr. 1959, A Method for assessing zinc status of soils using acid-extractable zinc and “titratable alkalinity” values. Soil Sci. 88:275-283.
Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter. pp.539-579. In: A.L. Page et al. (ed.) Methods of soil analysis. Part 2. (2nd ed.) Agronomy, Monograph 9(2), Am. Soc. Agron., Madison, Wisconsin.
Murayama. 1984. Decomposition kinetics of straw saccharides and synthesis of microbial saccharides under field conditions. J. Soil Sci. 35:231-242.
Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. P. 403-430. In A.L. Page. Etal. (ed.) Methods of soil analysis. Part 2. 2nd ed.Agron. Monogr. 9. ASA and SSSA, Madison, WI.
O’Neil, P.V. 1995. Advanced engineering mathematics. PWS-KENT Publishing Company. New york.
Ouiroga, A.R., D.E. Buschiazzo, and N. Peinemann. 1996. Soil organic matter particle size fractions in soils of the semiarid Argentinia Pampas. Soil Sci. 161(2):104-107.
Pal, D. and F.H. Broadbent. 1975. Kinetics of rice straw decomposition in soils. J. Environ. Qual. 4:256-260.
Paul, E.A., and J.A. van Veen. 1978. The use of tracers to determine the dynamic nature of organic matter. Trans. 11th Int. Congr. Soil Sci. Vol. 3:61-102.
Parton, W.T., D.S. Schimel., C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 51:1173-1179.
Persson, H. 1983. The distribution and productivity of fine roots in boreal forests. Plant Soil. 71:87-101.
Pinck, L.A., F.E. Allison and M.S. Sherman. 1950. Maintain of soil organic matter: II. Losses of carbon and nitrogen from young and mature plant materials during decomposition in soil. Soil Sci. 69:391-401.
Raich, J.W. and C.S. Potter. 1995. Global patterns of carbon dioxide emissions from soil Glob. Biogeochem. Cycles. 9(1):23-26.
Rhoades, J.D. 1982. Soluble salts. P. 167-179. In A.L. Page et al.(ed.) Methods od soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Rosenzweig, C. and M.L. Parry. 1994. Potential impact of climate change on world food supply. Nature (London) 367:133-138.
Russell, J.A. 1964. Mathematical expression of seasonal changes in soil organic matter. Nature (Lond.) 204:161-162.
Russell, J.S. 1975. A mathematical treatment of the effect of cropping system on soil organic nitrogen in two long-term sequential experiments. Soil Sci. 120:37-44.
Seligman, N,C., and H. van Keulen. 1981. PAPRAN: A simulation model of annual pasture production limited by rainfall and nitrogen. pp.192-221. In: M.J. Frissel and J.A. van Veen.(ed.) Simulation of Nitrogen Behavior of Soil-Plant Systems. (PUDOC: Wageningen, Netherlands.)
Seneta, E. 1981. Non-negative matrices and markov chains. Springer-Verlag, New York.
Schnitzer M. 1991. Soil organic matter-the next 78 years. Soil Science 151:41-58.
Shan, J.P. and D.L. Tao. 1992. Overseas researches on tree fine root. Chin J Ecol. 66:573-597.(in Chinese)
Simonson, R.W. 1991. Soil Science-goals for the next 75 years. Soil Science 151:41-58.
Sinha, M.K., D.P. Sinha and H. Sinha. 1977. Organic matter transformations in soils. V. kinetics of carbon and nitrogen mineralization in soils amended with different organic materials. Plant Soil. 46:576-590.
Stevenson F.J. 1982. Humus Chemistry. John Wiley & Sons, Somersel, NJ. P.17.
Stevenson, F.J.(ed.). 1986. Cycles of soil carbon, nitrogen, phosphorus, sulphur, micronutrients. John Wiley & Sons . New York.
Tester, C.F., L.J. Sikora, J.M. Taylor and J.F.Parr. 1977. Decomposition of sewage sludge compost in soil :I Carbon and nitrogen transformations. J. Environ. Qual. 6:459-463.
van der Linden, A.M.A., J.A. van Veen and M.J. Frissel. 1987. Modeling soil organic matter levels after long-term applications of crop residues, and farmyard and green manures. Plant Soil. 101:21-28.
van Veen, J.A., and E.A. Paul. 1981. Organic carbon dynamics in grassland soils. I. Background information and computer simulation. Can. J. Soil Sci. 61:185-201.
Voroney, R.P., E.A. Paul and D.W. Anderson. 1989. Decomposition of wheat straw and stabilization of microbial products. Can. J. Soil Sci. 69:63-77.
Wagner, G.H. 1981. Humus under different long-term cropping systems. pp:23-29. Colloque. Humus-Azote, Reims, France. July. Assoc. Intl. Sci. Sol and Assoc. Francaise Etude Sol, Paris.
Yu, W.T. and Y.Q. Yu. 2001. Advances in the research of underground biomass. Chin. J. Appl. Ecol. 12:927-932.
Zinke, P.J., A.G. Stangenberger, W.M. Post, W.R. Emmanuel and J.S. Olson. 1984. Worldwide organic soil carbon and nitrogen data. ORNL/TM-8857, Oak Ridge National Laboratory. Oak Ridge, Tennessee.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔