跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宛儒
論文名稱:十字花科蔬菜黑腐病菌熱休克調節蛋白HrcA之大量表現純化及熱休克蛋白基因hsp20之選殖
論文名稱(外文):Purification of heat shock protein HrcA and cloning of heat shock gene hsp20 of xanthomonas campestris pv. campestris
指導教授:翁淑芬翁淑芬引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:十字花科蔬菜黑腐病菌
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
過去的研究顯示,HrcA是一個熱休克蛋白,具有負向調控的功能。本實驗室已經選殖並定序完成Xanthomonas campestris pv. campestris 17 ( Xc17 )的hrcA基因。因此本研究的目的之一是表現純化Xc17的HrcA蛋白,並觀察在in vivo及in vitro的情況下,HrcA蛋白與CIRCE element間的作用情形。首先,以蛋白質表現載體大量表現HrcA蛋白,並純化之。由於純化後的蛋白多以inclusion body形式存在,因此以透析的方式renature。接著將已知含有CIRCE element之DNA片段利用PCR的方式進行增殖。所拓增的DNA片段包括X. campestris pv. phaseoli 及A. tumefaciens的 groES基因上游包含CIRCE element及啟動子部分。利用gel retardation方法觀察HrcA與CIRCE element之間的結合情形,結果並沒有明顯的band shift產生,亦即純化的HrcA並沒有與包含CIRCE element的DNA片段結合。在in vitro的實驗中,我們將含有CIRCE element之DNA片段構築到以b-galactosidase為reporter之啟動子表現載體上,分別送入Xc17及Xc17 hrcA-中,觀察啟動子的表現,以了解HrcA蛋白與CIRCE element間的作用。結果,不管是否經過熱休克處理Xc17 hrcA-比Xc17的b-galactosidase的活性表現高,顯示在菌體內HrcA與CIRCE element可能是有作用,但並沒有顯著效應。
本實驗室先前利用二維電泳法,觀察到Xc17經熱休克處理後會明顯表現一小分子熱休克蛋白,分子量約20 kDa。本研究之另一個目的是由Xc17中選殖出完整的hsp20基因並探討。根據推測蛋白的保守區域序列,先設計degenerate的引子,以PCR的方式選殖出一段約200 bp的片段,將該片段接入載體後利用電孔法送入Xc17中,進行single crossover。以抗生素篩選得到一個轉殖株,命名為Xc17:: pOK-hsp20。再以適當限制酵素切割轉殖株之染色體後,使其自我黏接,再轉殖送入E. coli。利用抗生素篩選,得到3個質體供定序。定序後得到hsp20基因,全長為477 bp,可轉譯出158個胺基酸,蛋白分子量為17.8 kDa,經比對後與 Xylella fastidiosa之小分子熱休克蛋白相似度為87.8%。在hsp20轉譯起始密碼ATG上游6~10 bp處有一個類似ribosomal binding site,在轉譯終止密碼TAA下游有一個類似terminator的序列。Primer extension分析結果發現hrcA轉錄起始點位於轉譯起始點上游第64 bp的位置。在轉錄起點上游可發現類似σ32啟動子認辨的 —10與 —35序列。將hsp20上游片段選殖於啟動子選殖載體pFY7上進行啟動子活性測試。結果顯示所選殖的片段有啟動子活性,且經熱休克處理後其活性最高會增加5~5.8倍。在定序過程中得到hsp20上游約600 bp的核酸序列,經分析比對後,推測hsp20上游有一個轉錄方向與之相反的peroxidase基因。

Heat shock protein HrcA acts as a repressor interacting with the CIRCE element at the transcriptional level in the majority of microorganisms which do not include E. coli. The hrcA in Xanthomonas campestris pv. campestris 17 ( Xc17 ) has been cloned and sequenced. To understand the interaction between HrcA and CIRCE elements, the Xc17 hrcA was cloned into pET-21a vector for over-expression in E. coli. Since the over-expressed HrcA protein was present as insoluble form, dialysis was performed to renature the HrcA. The DNA fragments carrying the CIRCE elements upstream of groES of X. campestris pv. phaseoli and A. tumefaciens were amplified by PCR. However, when the PCR fragments were incubated with the His-bind purified HrcA for gel mobility shift assays, no interaction was observed. To analyze the effects of HrcA on CIRCE element in vivo, the PCR fragments were cloned in the promoter-proving vector pFY13-9, which use the promoter-less lacZ as the reporter, and transformed into the wild-type Xc17 and hrcA mutant. The levels of b-galactosidase in hrcA mutant were higher than that in Xc17, indicating that the expression is repressed by HrcA. After heat shock treatments, the promoter activity increased by 30%, implicating that HrcA interacts with CIRCE elements in vivo, although the effect is not strong.
It was previously found that following heat shock treatments, Xc17 de novo synthesizes a protein of about 18 kDa. N-terminal sequencing data suggested this protein to be a Hsp20 homologue of bacteria. In this study, the Xc17 hsp20 gene was cloned and sequenced. The results indicated that it is 477-bp long able to code for a polypeptide of 158 amino acids with a calculated molecular weight of 17.8 kDa. The deduced amino acid sequence has 87.8 % similarity to the low molecular weight heat shock protein in Xylella fastidiosa. Primer extension analysis showed that the transcription start site is located 64 bp upstream of the hsp20 start codon. Consensus —10 and —35 sequences similar to that recognized by s32 in many other bacteria are present upstream of the transcription start site. Presence of promoter activity at the hsp20 upstream region was demonstrated by transcriptional fusion assay. In addition, the promoter activity was found to increase by 5.8 folds after heat shock. An open reading frame homologous to peroxidase gene which transcribed divergently is present upstream of the Xc17 hsp20.

縮寫字對照表................................................. 1
中文摘要..................................................... 3
英文摘要..................................................... 5
前言........................................................ 7
材料與方法................................................. 14
I. 材料................................................... 14
一、菌種、噬菌體及質體................................ 14
二、藥品及酵素........................................ 14
三、引子 (Primers) ................................... 14
四、培養基及緩衝液.................................... 15
五、離心機............................................ 15
II. 實驗方法.............................................. 16
一、染色體DNA之抽取.................................. 16
二、小量質體DNA之抽取................................ 16
三、洋菜膠電泳........................................ 17
四、限制酵素切割分析.................................. 18
五、DNA回收 ......................................... 18
六、DNA補齊反應...................................... 20
七、DNA黏接反應 ..................................... 20
八、勝任細胞 ......................................... 20
九、轉型作用.......................................... 21
十、電孔法............................................ 21
十一、快速篩選法...................................... 22
十二、DNA探針之製備.................................. 22
十三、Sephadex G-50 column............................ 23
十四、南方墨點雜交法.................................. 23
十五、Xc17菌體內總量RNA之抽取....................... 24
十六、mRNA primer extension偵測轉錄起始點............ 25
十七、b-galactosidase活性之測定....................... 25
十八、PCR............................................. 26
十九、蛋白質純化...................................... 26
二十、SDS PAGE........................................ 27
二十一、西方墨電雜膠法................................ 27
二十二、Gel retardation............................... 28
結果與討論................................................. 29
一、CIRCE element之選殖................................. 29
二、HrcA蛋白之大量表現與純化............................ 30
( 1 ) HrcA蛋白表現質體pEThrcA之構築............... 31
( 2 ) HrcA蛋白之大量表現與純化...................... 31
A、HrcA蛋白的大量表現........................ 31
B、HrcA蛋白的純化............................ 32
C、Western blot 分析與N端定序................ 32
三、HrcA蛋白之renature................................. 33
四、HrcA蛋白與CIRCE element間之作用.................... 33
( 1 ) In vitro.......................................... 33
A、粗萃蛋白.................................... 33
B、純化之HrcA蛋白............................ 34
( 2 ) In vivo.......................................... 35
A、pFYXp表現載體的構築...................... 35
B、活性分析.................................... 36
五、hsp20基因之選殖..................................... 37
六、hsp20轉錄起點及啟動子位置之分析..................... 39
七、hsp20啟動子活性測試................................. 40
( 1 ) pFYH20表現載體的構築.......................... 40
( 2 ) 活性分析........................................ 37
八、Xc17 hsp20突變株之構築..............................41
九、hsp20上游序列之比對................................. 43
參考文獻.................................................... 44
圖表........................................................ 55
附錄、培養基、藥品及緩衝液配方.............................. 84

楊振華 (1999). 十字花科黑腐病菌dnaK操縱組啟動子之選殖與分析。國立中興大學分子生物學研究所碩士論文。
吳承德 (2000). 十字花科黑腐病菌hrcA基因之選殖定序與特性之研究。國立
中興大學分子生物學研究所碩士論文。
許佳智 (2000). 十字花科黑腐病菌gorESL基因之選殖與特性之研究。國立
中興大學分子生物學研究所碩士論文。
王仕文 (2000). 十字花科黑腐病菌hrcA基因突變株之構築與特性之研究。國立中興大學分子生物學研究所碩士論文。
Arrigo, A.-P. and Landry, J. (1994) Expression and function of the low -molecular -weight heat shock proteins. Morimoto, R. I., Tissieres, A. and Georgopoulos, C., editors, The Biology of Heat Shock Protein and Molecular Chaperones.: 335-373.
Barrere, G. C., Barber, C., and Daniels, M. J. (1986) Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. campestris. Int. J. Macromol 8: 372-374.
Berry, A., Devault, J. D., and Chakrabarty, A. M. (1989) Hight osmolarity is a signal for enhanced alg D transcription in mucoid and nonmucoid Psudomonas aeruginosa strains. J. Bacteriol. 171:2312-2317.
Berengian, A. R., Parfenova, M., and Mchaourab, H. S. (1999) Site-directed spin labeling subunit interactions in the α-crystallin domain of small heat-shock. Protein. J. Biol. Chem. 274: 6305-6314.
Boston, R. S., Lee, G. J. and Vierling, E. (1996) Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32: 191-222.
Bucca, G., Hindle, Z. and Smith, C. P. (1997) Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J. bacteriol. 179: 5999-6004.
Caspers, G., Leunissen, J. A. M., and de Jond, W. W. (1995) The expanding small heat-shock protein family, and structure predictions of the conserved "alpha-crystallin domain". J. Mol. Evol. 40: 238-248.
Chang, Z., Primm, T. P., Jakana, J., Lee, I. H. Serysheva, I., Chiu, W., Gilbert, H. F. and Quiocho, F. A. (1996) Mycobacterium tuberculosis 16-kDa antigen ( Hsp16.3 ) functional as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271: 7218-7223.
Craig, E. A., Weissman, J. S. and Horwich, A. L. (1994). Heat shock proteins and molecular chaperones : mediators of protein conformation and turnover in the cell. Cell 78: 365-372.
Daniel, E. W., and Patterson, J. A. (1992) Anaerobic production of extracellular polysaccharide by Butyrivibrio fibrisolvens nyx. Appl. Environ. Microbiol. 58: 385-391.
Derre, I., Rapoport, G., and Msadek, T. (1999a) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol. Microbiol. 31: 117-131.
Derre, I., Rapoport, G., Devine, K., Rose, M. and Msadek, T. (1999b) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol. Microbiol. 32: 581-593.
Duchene, A. M., Thompson, C. J. and Mazodier, P. (1994) Transcriptional analysis of groEL genes in Streptomyces A3(2). Mol. Gen. Genet. 245: 61-68.
Ehrnsperger, M., Graber, S., Gaesterel, M., and Buchner, J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16: 221-229.
Ellis, R. J., and Van der Vies, S. M. (1991) Molecular chaperones. Annu. Rev. Biochem. 60: 321-347.
Gaestel, M., Vierling, E. and Buchner, J. (1997) The small heat shock protein ( sHSP ) family-an overview.
Georgopoulos, C., and Ang, D. (1990) The Escherichia coli GroE chaperonins. Semin Cell Biol. 1: 19-25.
Georgopoulos, C., and Welch, W. J. (1993) Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Mol. Biol. 9: 601-634.
Grandvalet, C., Rapoport, G. and Mazodier, P. (1998) hrcA, encoding the repressor of the groEL genes in Streptomyces albus G, is associated with a second dnaJ gene. J. Bacterol. 180: 5129-5134.
Grandvalet, C., de Crecy-Lagard, V. and Mazodier, P. (1999) The ClpB ATPase of Streptomyces albusG belongs to the HspR heat shock regulon. Mol. Microbiol. 31: 521-532.
Hartl, F. U. and Martin, J. (1992) Protein folding in the cell : The role of molecular chaperones hep70 and hsp60. Annu. Rev. Biolphys. Biomol. Struct. 21: 293-322.
Hecker, M., Schumann, W. and Volker, U. (1996) Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19: 417-428.
Hendrick, J. P. and Hartl, F. -U. (1995) The role of molecular chaperones in protein folding. FASEB J. 9: 1559-1569.
Homuth, G., Masuda, S., Mogk, A., Kobayashi, Y. and Schumann, W. (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J. Bacteriol 179: 1153-1164.
Horwich, A. L. (1995) Resurrection or destruction? Curr. Biol. 5: 455-458.
Horwitz, J. (1993). Proctor Lecture. The function of alpha-crystallin. Invest. Ophthalmol. Vis. Sci. 34: 10-22.
Jakob, U., Gaestel, M., Engel, K. and Buchner, J. (1993) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268: 1517-1520
Jakob, U. and Buchner, J. (1994) Assisting spontaneity : the role of HSP90 and small HSPs as molecular chaperones. Trends Biochem. Sci. 19: 205-211.
James, P., Pfund, C and Craig, E. A. (1997) Functional specificity among HSP70 molecular chaperones. Science 275: 387-389.
Jinn, T. —L., Chen, Y. —M., Lin, C. —Y.(1995) Characteriaization and physiological function of class I low molecular weight heat shock protein complexes in soybean. Plat Phys. 108: 693-701.
Kao, C. C., Barlow, E., Sequeira, L. (1992) Extracellular polysaccharide is required for wild-type virulene of Psedomonas solanacearum. J. Bacteriol. 174:1068-1071
Kim, K. K., Kim, R., and Kim, S. H. (1998) Crystal structure of a small heat-shock protein. Nature 394: 595-599.
Kruger, E., and Hecker, M. (1998). The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J. Bacteriol. 180: 6681-6688.
Kurganov, B. I. and Topchieva, I. N. (1998) Artificial chaperone-assisted refolding of proteins. Biochemistry ( Mosc ). 63: 413-9.
Lee, G. J., Pokala, N., and Vierling, E. (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270: 10432-10438.
Lee, G. J., Roseman, A. M., Saibil, H. R., and Vierling E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16: 659-671.
Lee, G. J. and Vierling, E. (2000) A Small Heat Protein Cooperates with Heat Shock Protein 70 Systems to Reactivate a Heat-Denatured Protein. Plant Physiol. 122: 189-197
Liang, P. and MacRae, T. H. (1997) Molecular chaperones and the cytoskeleton. J. Cell Science 110: 1431-1440.
Minder, A. C., Fischer, H. M., Hennecke, H. and Narberhaus, F. (2000) Role of HrcA and CIRCE in heat shock regulatory network of Bradyrhizobium japonicum. J. Bacteiol. 182: 14-22.
Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F. X. and Schumann, W. (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16: 4579-90.
Mogk, A., Volker, A., Engelmann, S., Hecker, M., Schumann, W. and U. Volker, U. (1998) Nonative protein induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 180: 2895-900.
Morimoto, R. I., Tissières, A. and Georgopoulos, C., editors (1991) Stress protein in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Morimoto, R. I., Tissières, A. and Georgopoulos, C., editors (1994) The Biology of Heat Shock Protein and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Munchbach, M., Nocker, A. and Narberhaus, F. (1999) Multipe small heat shock protein in Rhizobia. J. Bacteriol. 181: 83-90.
Nair, S., Derre, I., Msadek, T., Gaillot, O. and Berche, P. (2000) CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol. Microbiol. 31: 800-811.
Narberhaus, F., Kaser, R., Nocker, A. and Hennecke, H. (1998) A novel DNA element that controls bacterial heat shock gene expression. Mol. Microbiol. 28: 315-323.
Parsell, D. A. and Lindquist, S. (1994) Heat shock proteins and stress tolerance. In The Biology of Heat Shock Protein and Molecular Chaperones.: 457-494.
Rao, P. V., Horwitz, J., and Zigler, J. S., Jr. (1993) Alpha-crystallin, a molecular
chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem. Biophys. Res. Commun. 190: 786-793.
Robert, R. C., Yoochinda, C., Avedissian, M., Baldini, R. L., Gomes, S. L. and Shapiro, L. (1996) Identification of a Caulobacter crescentus operon encoding hrcA, involved in negative heat-inducible transcription, and the chaperon gene grpE. J. Bacteriol. 178: 1829-1841.
Roy, S. K., Hiyama, T., Nakamoto, H. (1999) Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an α-crystall-related, small heat shock protein. Eur. j. Biochem 262: 406-416.
Schirmer, E. C. ,Glover, J. R., Singer, M. A. and Lindquist, S. (1996) HSP100/Clp protein: a common mechanism explains diverse functions. Trends Biochem Sci. 21: 289-296.
Schlesinger, M. J. (1990) Heat shock proteins. J. Biol. Chem. 265: 12111-12114.
Schmidt, A., Schiesswohl, M., Volker, U. and Schumann, W. (1992) Cloning, sequence, mapping, and transcriptional analysis of the groESL operon from Bactillus subtilis. J. Bacteriol. 174: 3993-3999.
Schulz, A., Tzschaschel, B. and Schumann, W. (1995) Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol. Microbiol. 15: 421-429.
Schulz, A., and Schumann, W. (1996) hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of the class I heat shock genes. J. Bacteriol. 178: 1088-1093.
Schumann, W. (1996) The heat shock stimulon of Bacillus subtilis. Braz. J. Genet. 19: 387-398.
Segal, G. and Ron, E. Z. (1996a) Heat shock activation of the groESL operon of Agrobacterium tumefaciens and the regulatory roles of the inverted repeat. J. Bacteriol. 178: 3634-40.
Segal, G. and Ron, E. Z. (1996b) Regulational and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol Lett. 138: 1-10.
Segal, G. and Ron, E. Z. (1998) Regulation of heat-shock response in bacteria. Ann N Y Acad Sci 851: 147-51.
Servant, P., and Mazodier, P. (1995) Characterization of Streptomyces albus 18-kilodaton heat shock-responsive protein. J. Bacteriol 177: 2998-3003.
Servant, P., and Mazodier, P. (1996) Heat induction of hsp18 gene expression in Streptomyces albus G: transcriptional and posttranscriptional regulation. J. Bacteriol 178: 7031-7036.
Servant, P., Rapoport, S. and Mazodier, P. (1999) RheA, the repressor of hsp18 in Streptomyces albus G. Microbiology 145: 2385-2391.
Spohn, G., and Scarlato, V. (1999) The autoregulatory HspR repressor protein governs chaperonr gene transcription in Helicobacter pylori. Mol. Microbiol. 34: 663-674.
Squires, C. L., S. Pedersn, B. M. Ross, and C. Squires. (1991) ClpB is Escherichia coli heat shock protein HtpG. J. Bacteriol. 173: 4254-4262.
Sutherlan, I. W. (1979) Microbial exppolysaccharides. TIBS. 1979:55-59
Tissières, A., Mitchell, H. K. and Tracy, U. M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster : relationn to chromosome puffs. J. Mol. Biol. 84: 389-398.
Tomoyoasu, T., Gamer,J., Bukau, B., Kanemori, M., Mori, H., Rutman, A. J., Oppenheim, A. B., Yura, T., Yamanaka, K., Niki, H., Hiraga, S. and Ogura, T. (1995) E. coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J. 14: 2551-2560.
Veinger, L., Diamant, S., Buchner, J. and Goloubinoff, P. (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured protein for subsequent refolding by a multichaperone network. J. Biol. Chem. 273: 11032-11037.
Vierling, E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620.
Watanabe K., Y. T., Suzuki Y (2001) Renaturation of Bacillus thermoglucosidasius HrcA Repressor by DNA and Thermostability of the HrcA-DNA Complex In Vitro. J. Bacteriol. 183: 155-161.
Waters, E. R., Lee, G. J. and Vierling, E. (1996) Evolution, structure and funtion of the small heat shock proteins in plants. J. Exp. Bot. 47: 325-338.
Weng, S. F., Tai, P. M., Yang, C. H., Wu, C. D., Tsai, W. J., Lin, J. W. and Tseng, Y. H. (2001) Characterization of stress-responsive genes, hrcA-grpE-dnaK-dnaJ, from phytopathogenic Xanthomonas campestris. Arch Microbiol. 176 : 121-8
Yalpani, M., and Sanford, P. A. (1987) Commercial polysaccharides recent trends and developments. In industrial polysaccharides: Genetic Engineering, Structure/Property Relations and Applications Yalpani, M. (ed.). Amsterdam: Elserier,pp. : 311.
Yang, B. Y., and Tseng, Y. H. (1988) Production of exopolysaccharide and levels of protease and pectinase activity in pathogenic and non-pathogenic strains of Xanthomonas campestris pv. campestris. Bot. Bull. Academia Sinica. 29: 93-99.
Yuan, G., and Wong, -L. S. (1995a) Regulation of groE expression in Bacillus subtilis: the involvement of the σA like promoter and the role pf the inverted repeat sequence ( CIRCE ). J. Bacteriol. 177: 5427-5433.
Zahn, R., perrett, S. and Fersht, A.R. (1996a) Conformational states bound by the molecular chaperones GroEL and SecB: a hidden unfolding (annealing) activity. J. Mol. Biol. 261: 43-61
Zahn, R. perrett, S., Stenberg, G. and Fersht, A.R. (1996b) Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science 271: 642-645.
Zuber, U., and Schumann, W. (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J. Bacteriol. 176: 1359-1363.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top