跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白燿嘉
研究生(外文):Yao-Chia Pai
論文名稱:Streptomycesrectiverticillatus轉麩氨醯胺基因之篩選與酵素特性之研究
論文名稱(外文):Clonging and Characterization of the Transglutaminase Gene from Streptomyces rectiverticillatus
指導教授:楊明德楊明德引用關係
指導教授(外文):Ming-Te Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:94
中文關鍵詞:轉麩氨醯胺
外文關鍵詞:Transglutaminase
相關次數:
  • 被引用被引用:7
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
轉麩氨醯胺 (Transglutaminase;TGase) 是種醯基轉移酵素,它可以催化由蛋白質上麩胺酸 (glutamine) 側鏈所提供的 -carboxyamide 基進行醯基轉移反應。目前轉麩氨醯胺在食品加工及醫學的應用上深具潛力,且是種高價位的酵素,因此本研究希望能尋求新的微生物來源之轉麩氨醯胺,並在酵素特性及大量生產上做進一步的探討。首先利用來自食工所菌種中心之九株 Streptomyces菌株,進行胞外TGase酵素活性偵測,另一方面利用已發表之 Streptomyces TGases 基因序列為基礎,以南方墨點雜交法及聚合鏈鎖反應確認其中除 Streptomyces aureoversale 及 Streptomyces luteoverticillatus 以外都具有 TGase 基因。且此七株菌TGase 基因的部份 DNA 序列轉譯成胺基酸後,經比對發現都有 80% 左右之相同性;然而不是具有 TGase 基因之放線菌都具有 TGase 酵素活性。本研究選擇其中 Streptomyces rectiverticillatus 菌株,篩選得到含完整 TGase基因的選殖株,發現其完整 TGase 基因共有 1257 個鹼基對,可以轉譯出含 418 個胺基酸分子量為 46.8 kDa 的蛋白。經胺基酸序列比對,與 S. mobaraense 完整 TGase 序列的相同性為 69.8%,mature TGase 部份則具有 78.2% 相同性。進一步利用基因重組方式構築含 S. rectiverticillatus與 S. septatus TGase 基因的重組質體,結果發現可以表現出之可溶性蛋白,但利用 Trypsin 切割後只有S. septatus mature TGase具有 TGase 活性。利用 PCR 方式分別增幅出含完整 S. rectiverticillatus TGase 基因的 DNA 片段,分別黏接於不同 pET 表現載體上,在 E. coli 宿主,可以表現出可溶性蛋白,但是偵測不出 TGase 活性。在原菌胞外 TGase 純化上,培養後的S. rectiverticillatus胞外粗酵素液初步偵測不到 TGase 活性,經過 50% 硫銨濃度初步分割,利用疏水性管柱色層分析以 25% 飽和度硫銨濃度沖洗後,可以初步分離得到比活性為 5.75 U/mg 的 TGase 蛋白,顯示於原菌中產生之 TGase 具有活性。
Transglutaminases (TGase;glutaminyl-peptide: amine -glutaminyltransferase, EC 2.3.2.13) are enzymes that catalyze an acyl transfer reaction in which -carboxyamide groups of protein-bound glutamine residues are the acyl donors. In recent years, studies on using TGase for food processing and the potential applications of TGase in medical treatment are increased. In addition, TGase is a high unit price enzyme. Thus, it would be worthwhile to find a new microbial source of TGase and further characterize the highly expressed recombinant microbial Transglutaminase. In this study, nine Streptomyces sp. obtained from CCRC (Taiwan) were analyzed. The presences of the TGase genes in the chromosome of these nine streptomyces sp. were identified by PCR reaction and Southern blot analyses. Results showed that seven out of the nine tested strains, except S. aureoversale or S. luteoverticillatus, have TGase genes. The amino acid sequence deduced from the PCR products of these Streptomyces species share about 80% identities. However, TGase activity was not detected in the cultures of every Streptomyces sp.. The DNA fragment containing the intact TGase gene was isolated from the constructed S. rectiverticillatus partial genomic library. The ORF of the cloned TGase gene has 1257 base pairs from which a 418 amino acids protein with molecular weight of 46.8 kDa could be encoded. The amino acid sequences of the intact and mature part of S. rectiverticillatus TGase share 69.8% and 78.2 % identities with that of S. mobaraense, respectively. The pro- and mature TGase genes of S. rectiverticillatus were separately amplified by PCR and subcloned into pET vector. The TGase protein could be overexpressed with soluble form in BL21(DE3), but no activity could be detected. On the other hand, transglutaminase activity can only be detected in the construct which has pro region of S. mobaraense and S. septatus mature TGase and when the S. mobaraense pro-region was removed by trypsin digestion. To test the TGase activity of S. rectiverticillatus, the extracellular proteins of S. rectiverticillatus were fractionation by ammonium sulfate precipitation and applied to hydrophobic chromatography. The fraction with TGase activities were eluted with the buffer containing 25% ammonium sulfate. The specific activity of the partial purified S. rectiverticillatus TGase is 5.75 U/mg.
縮寫字對照表 3
中文摘要 5
英文摘要 6
前言 7
材料與方法 14
I. 材料 14
一、菌種及質體 14
二、藥品 14
三、酵素 14
四、培養液及緩衝液 14
五、引子 (primers) 15
II. 實驗方法 16
一、染色體DNA之抽取 16
二、E. coli 質體 DNA 的小量抽取 16
三、DNA 的洋菜膠電泳分析 17
四、DNA 片段的回收及純化 17
五、DNA 黏接反應 (ligation) 17
六、引子 (Primer) 的設計 18
七、聚合鏈鎖反應 (polymerase chain reaction, PCR) 18
八、T-vector 之製備 18
九、勝任細胞 (Competent cell) 之製備 19
十、轉形作用 (Transformation) 19
十一、質體快速篩選法( Rapid screen ) 19
十二、DNA 探針的製備 20
十三、南方轉漬雜交法 (Southern hybridization) 20
十四、膠體內雜交法 ( In gel hybridization ) 20
十五、S. rectiverticillatus 染色體 TGase 基因部份基因庫之構築 21
十六、菌落雜交法 (colony hybridization) 21
十七、雙股DNA模板之製備 22
十八、DNA定序分析 22
1. DNA定序反應 (Sanger dideoxy DNA sequencing reaction) 22
2. Automated cycle DNA定序反應 22
十九、菌種甘油保存法 23
二十、Transglutaminase 基因在 E. coli 的表現 23
1. Transglutaminase 蛋白表現載體的構築 23
2. Transglutaminase 蛋白的大量表現 23
3. Transglutaminase 蛋白的純化 23
二十一、SDS-PAGE之蛋白分析 24
1.SDS-PAGE之配製 24
2.蛋白樣本之製備 24
3.泳分析及染色 24
4.西方墨點法 (Western blot) 25
二十二、Transglutaminase 活性的測定 25
二十三、Transglutaminase 酵素活性單位 25
結果 27
一、不同菌株轉麩氨醯胺基因之篩選 27
1. 胞外轉麩氨醯胺蛋白的表現與基因之篩選 27
a.胞外轉麩氨醯胺活性測試 27
b.胞外轉麩氨醯胺之西方墨點法之分析 27
c.南方墨點雜交法之分析 28
d.聚合鏈鎖反應 28
e. DNA序列分析…………………………………………………… 29
二、S. rectiverticillatus TGase基因之選殖……………………………………29
1.部分基因庫之構築 29
2.菌體雜交法 30
3. DNA定序分析 30
三、E. coli菌體內表現S. rectiverticillatus TGase 31
1. mature 部份 31
a. pET-21d 重組質體之構築與表現 31
b. pET-26b 重組質體之構築與表現 32
c. pET-30b重組質體之構築與表現 32
d. pET-32a 重組質體之構築與表現 33
e. pLT7重組體質之構築與表現 34
2. Pro-TGase部份 34
a. pET32a-SrproTGA重組質體之構築與表現 34
b. pET32a-SmproSrTGase、pET32a-SmproSsTGase重組質體之構築與表現 35
四、原菌胞外 TGase 之純化 36
討論 38
參考文獻 43
圖表 51
附錄 87
朱文深. 1998. 微生物轉穀氨醯胺之開發與應用. 食品工業30(4):30-39。
吳介文、蔡國珍、江善宗. 1996. 轉麩氨醯胺基生產菌株之篩選及影響其產量因子之探討.中國農化會誌34(2):228-240。
吳師誠 2002. Streptomyces kentuckense CCRC 12429轉麩氨醯胺基因之篩選與酵素特性之研究。國立中興大學分子生物學研究所碩士論文。
Abe, T., S., DiAugustine, R. P. and Folk, J. E. (1977) Rabbit liver transglutaminase : physical, chemical and catalytic properties. Biochemicstry. 16: 5495-5501.
Alaoui, S. E., Legastelois, S., Roch, A., Chantepie, J. and Quash, G. (1991) Transglutaminase activity and -(-glutamyl)lysine isopeptide levels during call growth: an enzymic and immunological study. Br. J. cancer. 48: 221-226.
Alaoui, S. E., Mian, S., Lawry, J., Quash, G. and Griffin, M. (1992) Cell cycle kinetics, tissue transglutaminase and programmed cell death. FEBS Letters. 331: 174-178.
Ando, H., Adachi, K., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H., and Motoki, M. (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2617.
Bohn, H. (1972) A zymogen indistinguishable from platelet factor XIII in physical, chemical and enzymatic properties may be prepared from human placental tissue. Ann. N. Y. Acad. Sci. 202: 256-262.
Brenner, S. and Wold F. (1978) Human erythrocyte transglutaminase purification and properties. Biochim. Biophys. Acta. 522:74-83.
Carrell, N. A., Erickson, H. P. and McDonagh, J. (1989) Electromicroscopy and hydrodynamic properties of factor XIII subunits. J. Biol. Chem. 264: 551-556.
Chang, S. I. and Folk, J. E. (1972a) Kinetic studies with transglutaminases: The human blood enzymes (activates coagulation factor XIII) and the guinea pig hair follicle enzyme. J. Biol. Chem. 247: 2798-2807.
Chang, S. I. and Folk, J. E. (1972b) Transglutaminase from hair follicle of guinea pig. Proc. Nat. Acad. Sci. USA 69: 303-307.
Chang, S. I., Lewis M. S. and Folk, J. E. (1974) Relationship of the catalytic properties of human plasma and platelet transglutaminase (activate blood coagulation factor XIII) to their subunit structures. J. Biol. Chem. 249: 940-950.
Clarke, D. D., Mycek, M. J. Neidle, A. and Waelsch, H. (1959) The incorporation of amines into protein. Arch. Biochem. Biophys. 79: 238-354.
Connellan, J. M., Chung, S. I., Whetzel, N. K., Bradley, L. M., and Folk, J. E. (1971) Structural properties of guinea pig liver transglutaminase. 246: 1093-1098.
Cooke, R. D. (1974) Calcium-induced dissociation of human plasma Factor XIII and the appearance of catalytic activity. Biochem. J. 141: 683-691.
Cooke, R. D., and Holbrook, J. J. (1974) The Calcium-induced dissociation of human plasma Factor XIII. Biochem. J. 141: 79-84.
Cooke, R. D., and Holbrook, J. J. (1974) Calcium and the assays of human plasma clotting factor XIII. Biochem. J. 141: 71-78.
Cooke, R. D., Pestell T. C. and Holbrook, J. J. (1974) Calcium and thiol relativity of human plasma clotting Factor XIII. Biochem. J. 141: 675-682.
Curtis, C. G., Brown, K. L., Credo, R. A., Domanik, R. A., Gray, A., Stenberg, P. and Lorand, L. (1974) Calcium-dependent unmasking of active center cysteine during activation of fibrin stabilizing factor. Biochemistry. 13: 3774-3780.
Dadabay, C. Y. and Pike, L. J. (1989) Purification and characterization of a cytosolic transglutaminase from a cultured human tumor-cell line. Biochem. J. 264: 679-686.
Duran, R., Junqua, M., Schmitter, J. M., Gancet, C. and Goulas, P. (1998) Purification, characterization, and gene cloning of transglutaminase from Streptoverticillium cinnamoneum CBS683.6. Biochimie. 80: 313-319.
Fesus, L., V. Thomazy and A. Falus. (1987) Induction and activation of tissue transglutaminase during proprammed ceu death. FEBS Lett. 224: 104-108.
Folk, J. E. (1970) Transglutaminase in “Methods in Enzymology”, Tabor, H., and Tabor, C. W. (ed.), vol. 17, pp: 889-894. Academic Press, New York.
Folk, J. E. (1980) Transglutaminases Ann. Rev. Biochem. 49: 517-531.
Folk, J. E., and Chung, S. I. (1973) Molecular and catalytic properties of transglutaminases. Adv. Enzymol. 38: 109-191.
Folk, J. E., and Chung, S. I. (1985) Transglutaminase in “Method in Enzymology”, Tabor, H. and Tabor, C.W. (ed.), Vol.113, pp.358-375. Acadenic Press, New York.
Folk, J. E., and Cole, P. W. (1966a) Identification of a functional cysteine essential for the activity of guinea pig liver transglutaminase. J. Biol. Chem. 241: 3328-3240.
Folk, J. E., and Cole, P. W. (1966b) Transglutaminase: Mechanistic features of the avtive site as determined by kinetic and inhibitor studies. Biochim. Biophys. Acta. 122: 244-264.
Folk, J. E., and Cole, P. W. (1966) Mechanism of action of guinea pig liver transglutaminae. J. Biol. Chem. 241: 5518-5525.
Folk, J. E., and Finlayson, J. S. (1977) The -(-glutamyl) lysine crosslink and the catalytic role of transglutaminases. Adv. Protein Chem. 31: 1-133.
Gray, A. M. & Mason, A. J. (1990) Requirement for activin A and transforming growth factor- 1 pro-regions in homodimer assembly. Science. 247: 1328-1330.
Greenberg, C. S., Birckbickler, P. J. and Rice, R. H. (1991) Transglutaminase: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 5:3071-3077.
Harding, H. W. J. and Rogers, G. E. (1972) Formation of the -(-glutamyl)lysine cross-link in hair proteins investigation of transglutaminases in hair follicles. Biochemistry 11: 2858-2863.
Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Burton, C. J., Kieser, H. M., Lydidate, D. J., Smith, C. P., Ward, J. M., and Schrempf, H. (1985) in Genetic Manipulation of Streptomyces : A Laboratory manual, The John Inns Foundation, Norwich.
Icekson, I. and Apelbaum, A. (1987) Evidence for transglutaminase activity in plant tissue. Plant Physiol. 84:971-974.
Inchinose, A., Bottenus, R. E. and Davie, E. W. (1990) Structure of transglutaminases. J. Biol. Chem. 265: 13411-13414.
Inchinose, A., and Davie, E. W. (1988) Characterization of the gene for the a subunit of human factor XIII (plasma transglutaminase), a blood coagulation factor. Proc. Natl. Acad. Sci. USA 85: 5829-5833.
Inchinose, A., Hendrickson, L. E., Fujikawa, K. and Davie, E. W. (1986a) Amino acid sequence of the a subunit of human factor XIII. Biochemistry 25: 6900-6906.
Inchinose, A., Mcmullen, B. A., Fujikawa, K. and Davie, E. W. (1986b) Amino acid sequence of the b subunit of human factor XIII, a protein composed of ten repetive segments. Biochemistry 25: 4633-4638.
Ingraham, J. L. and C. A. Ingraham. (1995) Introduction to Microbiology. Pp. 271-272. Wadsworth, U.S.A.
Ikura, K., Nasu, T., Yokota, H., Tsuchiya, Y., Sasaki, R. and Chiba, H. (1988) Amino acid sequence of guinea pig liver transglutaminase from its cDNA sequence. Biochemistry 27: 2898-2905.
Ikura, K., Kometani, T., Sasaki, R., and Chiba, H. (1980) Crosslinking of soybean 7S an 11S proteins by transglutaminase. Agric. Biol. Chem. 44: 2979-2984.
Ikura, K., Okumura, K., Yoshkawa, M., Sazaki, R., and Chiba, H. (1985) Incorporation of lysyldipeptides into food protein by transglutaminase. Agric. Biol. Chem. 49: 1877-1878.
Ikura, K., Yoshikawa, M., Sasaki, R., and Chiba, H. (1981) Incorproation of amino acids into food proteins by transglutaminase. Agric. Biol.Chem. 45: 2587-2592.
Kalakoutskii, L. V. and N. S. Agre. (1976) Comparative aspects of development and differentiation in actinomycetes. Bacteriol. Rev. 40: 469-524.
Kanaji, T., Ozaki, H. Takao, T., Kawajir, H., Ide, H., Motoki, M., and Shimonishi, Y. (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain S-8112. J. Biol. Chem. 268: 11565-11572
Kawai, M., Takehana, S., and Takagi, H. (1997) High-level expression of the chemically synthesized gene for microbial transglutaminase from Streptoverticillium in Escherichia coli. 61: 830-835.
Kein, J. D., Guzman, E., and Kuehn, G. D. (1992) Purification and partial characterization of transglutaminase from Physarum polycephalum. J. Bacteriol. 174: 2599-2605.
Kim, H. C. Idler, W. W., Kim, I. G. and Han, J. H. (1991) The complete amino acid sequence of human transglutaminase K enzyme deduced from the nucleic acid sequences of cDNA clones. J. Biol. Chem. 266: 536-539.
Kobayashi, K., Hashiguchi, K., Yokozeki, K., and Yamanaka, S. (1998) Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci. Biotechnol. Biochem., 62:1109-1114.
Kong, H., Lin, L.-F., Porter, N., Stickel, S., Byrd, D., Posfai, J. and Roberts, R. J. (2000) Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. 17: 3216-3223.
Kri-ichi Y., Yoshimi K., Hisashi Y., (1998) Overproduction of DnaJ in Escherichia coli improve in Vivo solubility of the recombinant fish-derive transglutaminase. Biosci. Biotechnol. Biochem., 62(6), 1205~1210.
Kri-ichi Y., Nami N., Katsuya S., KoujiK., (2000) Overproduction of microbial transglutaminase in Escherichia coli , in vitro refolding, and characterization of the refolded form. .Biosci. Biotechnol. Biochem., 64(6), 1263~1270.
Kuraishi, C., Sakamoto, J., and Soeda, T. (1996) The usefulness of transglutaminase for food processing. In “ Biotechnology for Improved Foods and Flavors” (Takeoka, G. R., Teranishi, R., Williams, P. J., and Kobayshi, A., eds), pp. 29-38, American Chemical Society.
Kurth, L., and Rogers, P. J. (1984) Transglutaminase catalyzed cross-linking of myosin to soybean protein, casein and gluten. J. Food Sci. 49: 573-576.
Lorand, L., Campbell-Wilkes, L. K. and Cooperstein, L. (1972) A filter paper assay for transamidating enzymes using radioactive amine substrates. Anal. Biochem. 50:623-631.
Lorand, L. Gray, A. J., Brown, K., Credo, R. B., Curtis, C. G., Domanic, R. A., and Stenberg, P. (1974) Dissociation of subunit structure of fibrin stabilizing factor during activation of the zymogen. Biochem. Biophys. Res. Commun. 56:914-922.
Matheis, G., and Whitaker, J. R. (1987) A review: enzymatic cross-linking of proteins application to foods. J. Food Biochem. 11: 309-327.
Motoki, M., and Nio, N. (1983) Crosslinking between different food proteins by transglutaminase. J. Food Sci. 48: 561-566.
Nakanishi, K., Nara, K., Hagiwara, H., Aoyama, Y., Ueno, H. and Hirose, S. (1991)Cloning and sequence analysis of cDNA clones for bovine aortic-endothelial-cell transglutaminase. Eur. J. Biochem. 202: 15-22.
Negi, M., Park, J. K. and Ogawa, H. (1990) Alteration of human epidermal transglutaminase during its activation. J. Dermatol. Sci. 1: 167-172.
Neidle, A., Mycek, M. J., Clarke, D. D., and Waelsch, H. (1958) Enzymic exchange of protein amide groups. Arch. Biochem. Biophys. 77: 227-229.
Nio, N., Motoki, M., and Takinami, K. (1985) Gelation of casein and soybean globulins by transglutaminase. Agric. Biol. Chem. 49: 2283-2286.
Ogawa, H. and Goldsmith, L. A. (1976) Human epidermal transglutaminase. J. Biol. Chem. 251: 7281-7288.
Pasternack, R., Dorsch, S., Otterbach, J. T., Robenek, I. R., Wolf, S. and Fuchsbauer, H.-L. (1998) Bacterial pro-transglutaminase from Streptoverticillium mobaraense-Purification, characterization and sequence of the zymogen. Eur. J. Biochem. 257: 570-576.
Peterson, L. L. and Wuepper, K. D. (1984) Epidermal and hair follicle transglutaminases and crosslinking in skin. Mol. Cell. Biochem. 58: 99-111.
Piacentini, M., L. Fesus, M. G. Farrace, L. Ghibelli, L. Piredda And G. Melino. (1991) The expression of “tissue” transglutaminase into human cancer cell lines is related with the proprammed cell death (apoptosis). Eur. J. Cell Biol. 54: 246-254.
Plisker, M. F., Thorpe, J. M. and Goldsmith, L. A. (1978) Human epidermal transglutaminase: stimulation by trypsin, organic solvents, and chaotropic salts. Arch. Biochem. Biophys. 191: 49-58.
Polakowska, R. R., Eickbush, T., Falciano, V., Razvi, F., and Goldsmith, L. A. (1992) Organization and evolution of the human epidermal keratinocyte transglutaminase I gene. Proc. Natl. Acad. Sci. USA 89: 4476-4480.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74: 5463-5467.
Schwartz, M. L., Pizzo, S. V., Hill, R. L. and Mckee, P. A. (1971) The subunit structures of human plasma and platlet Factor XIII (Fibrin-stabilizing Factor). J. Biol. Chem. 246: 5851-5854.
Schwartz, M. L., Pizzo, S. V., Hill, R. L. and Mckee, P. A. (1973) Human Factor XIII from plasma and platelets. J. Biol. Chem. 248: 1395-1407.
Seitz, J., Keppler, C., Huntemann, S., Rausch, U. and Aumueller, G. (1991) Purification and molecular characterization of a secretor transglutaminase from coagulating gland of the rat. Biochim. Biophys. Acta. 1078: 139-146.
Seiving, B., Stenberg, P. and Nilsson, B. (1991) A new assay for transglutaminase. Scand. J. Clin. Lab. Invest. 50: 119-124.
Seki, N., Uno, H., Lee, N. H., Kimura, I., Toyoda, K., Fujita, T. and Arai, K. (1990)Transglutaminase activity in Alaska Pollack muscle and surimi, and its reaction with myosin B. Bull. Jap. Soc. Sci. Fish. 56: 125-132.
Soria, A., Soria, C., and Boulard, C. (1975) Fibrin stabilizing factor (F. XIII) and collagen polymerization. Experientia 31: 1355-1357
Takagi, T. and Doolittle, R. F. (1974) Amino acid sequence studies on Factor XIII and the peptide released during its activation by thrombin. Biochemistry 13: 750-756.
Takahashi, N., Takahashi, Y. and Putnam, F. W. (1986) Primary structure of blood coagulation Factor XIIIa (fibrnoligase, transglutaminase) from human placent. Proc. Natl. Acad. Sci. USA 83: 8019-8023.
Takehana, S., Washizu, K., Ando, K., Koikeda, S., Takeuchi, K., Matsui, H., Motoki, M., and Takagi, H. (1994) Chemical synthesis of the gene for microbial transglutaminase from Streptoverticillium and its expressions in Escherichia coli. Biosci. Biotech. Biochem. 58: 88-92.
Vollf, J. N. and J. Altenbnchner. (1988) Genetic instability of the Streptomyces chromosome. Molecular Microbiol. 27: 239-246.
Washizu, K., Ando, K., Koikeda, S., Hirose, S., Matsurra, A., Takagi, H., Motoki, M., and Takeuchi, K. (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci. Biotech. Biochem. 58: 82-87.
Weissman, J. S., & Kim, P. S. (1992) The pro region of BPTI facilitates folding. Cell. 71: 841-851.
Wilhelm, B., B., A. Meinhardt and J. Seitz. (1996) Transglutaminaes purification and activity assays. J. Chromatogr. B. 684: 163-177.
Wong, W. S. D., Batt, C. and Kinsella, J. E. (1990) Purification and characterization of rat liver transglutaminase. Int. J. Biochem. 22: 53-59.
Yildirim, M., and Hettiarachchy, N. S. (1997) Biopolymers produced by cross-linking soybean 11S globulin with whey proteins using transglutaminase. J. Food Sci. 62: 270-275.
Yokoyama K.-I., kikuchi, Y., and Yasueda, H. (1998) Overproduction of DnaJ in Escherichia coli improves in vivo solubility of the recombinant fish-derived transglutaminase. Biosci. Biotechnol. Biochem. 62(6):1205-1210.
Yokoyama, K.-I., Nakamura, N., Seguro, K. and Kubota K. (2000) Overproduction of Microbial Transglitaminase in Escherichia coli, In Vitro Refolding, and Characterization of the Refolded Form. Biosci. Biotech. Biochem. 64: 1263-1270.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top