跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊彰
研究生(外文):Chun-Chang Chen
論文名稱:Aspergillusoryzae與Aspergillussojaeleucineaminopeptidase基因的調控,特性與表現
論文名稱(外文):Regulation , characterization and expression of Aspergillus oryzae and Aspergillus sojae leucine aminopeptidase gene
指導教授:許文輝許文輝引用關係
指導教授(外文):Wen-Hwei Hsu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:124
中文關鍵詞:麴菌白胺酸基因調控
外文關鍵詞:Aspergillusleucine aminopeptidasegene regulation
相關次數:
  • 被引用被引用:9
  • 點閱點閱:524
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:0
Leucine aminopeptidase (LAP) 是用於去除胜肽苦味的酵素。本研究由Aspergillus sojae選殖 lap 基因,並比較A. sojae LAP的酵素性質與Aspergillus oryzae LAP之差異性。由酵素性質分析與序列比對的結果, LAP應該是屬於鋅離子依賴酵素家族的一員。將A. oryzae的 lap 基因選殖到表現載體pQE 30上,並且利用噬菌體的T5啟動子表現lap基因。發現LAP在Escherichia coli NovaBlue菌體內幾乎全部都會形成內涵體。利用北方墨點雜交法及酵素活性分析法,發現lap基因的表現會受到pH值、碳源及氮源的調控。lap基因在鹼性環境下表現量最多,而碳源(glucose與glycerol)與無機氮源(urea與ammonium sulfate)卻會抑制其表現。本研究也成功的利用Novozyme 234與Yatalase建立A. oryzae原生質體的製備方法。利用UV突變,篩選到A. oryzae抗pyrithiamine的突變株,由突變株中選殖ptrA基因,並將其構築在E. coli - A. oryzae穿梭載體上,作為基因轉形之篩選標誌。
Leucine aminopeptidase (LAP) is used in the debitterring of peptides. Aspergillus sojae lap gene was cloned and the properties of gene product was compared with the purified A. oryzae LAP. Based on enzyme properties and sequence comparison, LAP was proved to be a zinc-dependent enzyme. A. oryzae lap gene was cloned into pQE30 and its expression was under the control of phage T5 promotor. The LAP formed inclusion bodies in transformed Escherichia coli NovaBlue. Northern blotting and activity assay indicated that the expression of lap gene was regulated by pH, carbon source, and nitrogen source. The lap gene was highly expressed in alkaline condition and repressed by carbon source (glucose and glycerol) and inorganic nitrogen source (urea and ammonium sulfate). A. oryzae protoplast could be successfully prepared by the enzyme mixture of Novozyme 234 and Yatalase. Pyrithiamine resistant mutants of A. oryzae were generated by UV mutation and their ptrB genes were cloned for the construction of the E. coli — A. oryzae shuttlt vector.
中文摘要-----------------------------------------------------------------------1
英文摘要-----------------------------------------------------------------------2
緒論------------------------------------------------------------------------------3
一. 蛋白質與胜肽類食品--------------------------3
1. 具有生物活性的胜肽--------------------------3
2. 生物活性胜肽在日本市場發展的情形------------------4
3. 生物活性胜肽的生產---------------------------------------4
4. 蛋白質水解液的介紹---------------------------------------5
5. 胜肽的呈味研究---------------------------------------------6
6. 苦味胜肽的研究---------------------------------------------7
7. 苦味胜肽的去除---------------------------------------------9
二. Leucine aminopeptidase (LAP)的簡介-------------10
1. LAP在生理上的重要性-----------------------------------10
2. LAP在食品工業上的應用--------------------------------11
三. A. oryzae------------------------------------------------12
1. A. oryzae的型態與分類------------------------------------12
2. A. oryzae的安全性------------------------------------------12
四. 環境pH值對絲狀真菌基因表現之調控-----------13
五. 氮源對絲狀真菌基因表現之調控---------------------14
六. 碳源對絲狀真菌基因表現之調控---------------------15
七. A. oryzae異源性蛋白表現系統-----------------------16
八. 前人研究--------------------------------------------------------18
九. 研究策略--------------------------------------------------------18
1. LAP的純化與酵素特性分析-----------------------------18
2. 利用E. coli 來表現lap基因-----------------------------18
3. 探討影響LAP生產的因素--------------------------------19
4. 建立A. oryzae異源性蛋白表現系統--------------------19
材料與方法--------------------------------------------------------------------21
一. 藥品---------------------------------------------------------------21
二. 菌株、質體及培養基---------------------------------------21
三. E. coli 質體 DNA 的抽取及轉形作用-------------22
四. DNA片段的回收及純化-------------------------------------22
五. 核酸純度、定量及洋菜凝膠電泳分析---------------23
六. 引子 (Primer) 的設計------------------------------------23
七. 聚合酶鏈鎖反應-----------------------------------------------23
八. DNA的黏接反應------------------------------------------------24
九. Aspergillus sp. 染色體DNA的抽取----------------25
十. A. sojae lap 基因的選殖------------------------------ 26
十一. 蛋白質的電泳分析-------------------------------------------26
十二. A. oryzae培養液的濃縮------------------------------------28
十三. LAP的純化-----------------------------------------------------28
1. A. oryzae LAP的純化-----------------------------------------28
2. A. sojae LAP的純化-------------------------------------------29
十四. LAP 之活性分析-----------------------------------------------29
1.蛋白質濃度的測定---------------------------------------------29
2. ρ-nitroaniline的標準曲線的製作-----------------------29
3.酵素呈色法------------------------------------------------------30
4.LAP 活性染色---------------------------------------------------30
十五. 南方轉漬雜交法------------------------------------------------31
十六. A. oryzae總RNA的萃取------------------------------------31
十七. 北方轉漬雜交法------------------------------------------------33
十八. lap 基因在 E. coli 的表現-----------------------------34
十九. 蛋白含醣量之分析---------------------------------------------35
二十. A.oryzae的抗藥性與氮源利用能力--------------------35
二十一. ptrA基因的選殖-----------------------------------------------35
1. UV的照射劑量與致死率的關係------------------------------35
2.利用UV篩選突變株並選殖ptrA基因-----------------------36
二十二. A. oryzae表現載體的建構-------------------------------36
二十三. A. oryzae 的轉形作用-------------------------------------37
結果-----------------------------------------------------------------------------------39
一. A. sojae lap 基因的選殖----------------------------------39
二. A. sojae lap基因的結構-----------------------------------39
三. A. sojae 與A. oryzae lap基因的比較----------------40
四. A. oryzae LAP的純化------------------------------------------40
五. A. sojae LAP的純化--------------------------------------------41
六. A. oryzae與A. sojae LAP的酵素性質分析-----------41
1. LAP的分子量------------------------------------------------------41
2. LAP的最適反應pH值-------------------------------------------42
3. LAP的最適反應溫度--------------------------------------------42
4. LAP對受質的選擇性--------------------------------------------43
5.金屬離子對LAP活性的影響-----------------------------------43
6. LAP的熱穩定性--------------------------------------------------44
7. LAP的pH穩定性------------------------------------------------44
8. NaCl對LAP活性的影響 ---------------------------45
9. H2O2對LAP活性的影響----------------------------45
七. LAP 3D結構的預測-----------------------------------------------46
八. 利用E. coli表現A. oryzae的lap基因---------------------46
九. 醣化作用對於LAP活性的影響--------------------------------47
十. lap基因在染色體上的套數---------------------------------------47
十一. 孢子的接種量與LAP活性的關聯性-----------------------48
十二. pH值、氮源與碳源對lap表現的影響--------------------48
十三. 原生質體的再生-----------------------------------------------------50
十四. A. oryzae的抗藥性及氮源利用能力-----------------------50
1.Zeocin------------------------------------------------------------------50
2.Pyrithiamine---------------------------------------------------------51
十五. ptrA基因的選殖-----------------------------------------------------51
1. UV的照射劑量與致死率的關係----------------------------------51
2.由抗pyrithiamine之突變株選殖ptrA基因----------------------52
3. Pyrithiamine對突變株的最小抑制濃度------------------------52
4. ptrA基因的序列分析-------------------------------------------------52
十六. A. oryzae - E. coli穿梭載體的建構----------------------------53
1. amyB基因的選殖-----------------------------------------------------53
2. amyB基因中止子的選殖--------------------------------------------53
3. amyB基因啟動子的選殖--------------------------------------------54
4. lap基因的選殖--------------------------------------------------------54
十七. 轉形株的確認----------------------------------------------------------55
討論---------------------------------------------------------------------------------------56
一. A. sojae的 lap基因-----------------------------------------------56
二. LAP的純化------------------------------------------------------------56
三. LAP的醣化作用-----------------------------------------------------57
四. LAP的性質-----------------------------------------------------------58
五. LAP在食品工業上的應用--------------------------------------62
六. LAP的生理角色------------------------------62
七. ptrA 基因--------------------------------------------------------------63
圖表----------------------------------------------------------------------------------------66
參考文獻---------------------------------------------------------------------------------112
1. Aaslyng, M. D., M. Martens, L. Poll, P. M. Nielsen, H. Flyge, and L. M. Larsen. 1998. Chemical and Sensory Characterization of Hydrolyzed Vegetable Protein, a Savory Flavoring. J Agric Food Chem 46(2):481-489.
2. Akiyama, M., and H. Nakashima. 1996. Molecular cloning of thi-4, a gene necessary for the biosynthesis of thiamine in Neurospora crassa. Curr Genet 30(1):62-7.
3. Almeida, I. C., D. C. Neville, A. Mehlert, A. Treumann, M. A. Ferguson, J. O. Previato, and L. R. Travassos. 1996. Structure of the N-linked oligosaccharide of the main diagnostic antigen of the pathogenic fungus Paracoccidioides brasiliensis. Glycobiology 6(5):507-15.
4. Arai, S., T. Osawa, H. Ohigashi, M. Yoshikawa, S. Kaminogawa, M. Watanabe, T. Ogawa, K. Okubo, S. Watanabe, H. Nishino, K. Shinohara, T. Esashi, and T. Hirahara. 2001. A mainstay of functional food science in Japan--history, present status, and future outlook. Biosci Biotechnol Biochem 65(1):1-13.
5. Bachmair, A., D. Finley, and A. Varshavsky. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234(4773):179-86.
6. Benedetti, E., E. Gavuzzo, A. Santini, D. R. Kent, Y. F. Zhu, Q. Zhu, C. Mahr, and M. Goodman. 1995. Sweet and bitter taste: structure and conformations of two aspartame dipeptide analogues. J Pept Sci 1(6):349-59.
7. Blandin, G., B. Llorente, A. Malpertuy, P. Wincker, F. Artiguenave, and B. Dujon. 2000. Genomic exploration of the hemiascomycetous yeasts: 13. Pichia angusta. FEBS Lett 487(1):76-81.
8. Brantl, V., H. Teschemacher, A. Henschen, and F. Lottspeich. 1979. Novel opioid peptides derived from casein (beta-casomorphins). I. Isolation from bovine casein peptone. Hoppe Seylers Z Physiol Chem 360(9):1211-6.
9. Brown, M. P., C. S. Brown-Jenco, and G. A. Payne. 1999. Genetic and molecular analysis of aflatoxin biosynthesis. Fungal Genet Biol 26(2):81-98.
10. Caddick, M. X., A. G. Brownlee, and H. N. Arst, Jr. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol Gen Genet 203(2):346-53.
11. Cavanagh, J. B., C. C. Nolan, and M. P. Seville. 1993. The neurotoxicity of alpha-chlorohydrin in rats and mice: I. Evolution of the cellular changes. Neuropathol Appl Neurobiol 19(3):240-52.
12. Cerovsky, V., and F. Bordusa. 2000. Protease-catalyzed fragment condensation via substrate mimetic strategy: a useful combination of solid-phase peptide synthesis with enzymatic methods. J Pept Res 55(4):325-9.
13. Chen, H. M., K. Muramoto, F. Yamauchi, K. Fujimoto, and K. Nokihara. 1998. Antioxidative Properties of Histidine-Containing Peptides Designed from Peptide Fragments Found in the Digests of a Soybean Protein. J Agric Food Chem 46(1):49-53.
14. Chevrier, B., C. Schalk, H. D''Orchymont, J. M. Rondeau, D. Moras, and C. Tarnus. 1994. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure 2(4):283-91.
15. Choi, G. H., E. T. Marek, C. L. Schardl, M. G. Richey, S. Y. Chang, and D. A. Smith. 1990. sti35, a stress-responsive gene in Fusarium spp. J Bacteriol 172(8):4522-8.
16. Christensen, T., M. J. Hynes, and M. A. Davis. 1998. Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Microbiol 64(9):3232-7.
17. Chung, Y. C., Y. S. Kim, A. Shadchehr, A. Garrido, I. L. Macgregor, and M. H. Sleisenger. 1979. Protein digestion and absorption in human small intestine. Gastroenterology 76(6):1415-21.
18. Curr, S. J., S. E. Unkles, and J. R. Kinghorn. 1987. The structure and organization of nuclear gene of filamentous fungi. Oxford University press, New York.
19. de Ruiter-Jacobs, Y. M., M. Broekhuijsen, S. E. Unkles, E. I. Campbell, J. R. Kinghorn, R. Contreras, P. H. Pouwels, and C. A. van den Hondel. 1989. A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet 16(3):159-63.
20. Denison, S. H. 2000. pH regulation of gene expression in fungi. Fungal Genet Biol 29(2):61-71.
21. Dowzer, C. E., and J. M. Kelly. 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11(11):5701-9.
22. Erlanger, B. F., N. Kokowsky, and W. Cohen. 1961. Arch. Biochem. Biophys. 95:271-278.
23. Esser, K., and P. A. Lemke. 1995. THE MYCOTA. Springer-Verlag, New York.
24. Fukudome, S., and M. Yoshikawa. 1992. Opioid peptides derived from wheat gluten: their isolation and characterization. FEBS Lett 296(1):107-11.
25. Ge, S. J., and L. X. Zhang. 1996. The immobilized porcine pancreatic exopeptidases and its application in casein hydrolysates debittering. Appl Biochem Biotechnol 59(2):159-65.
26. Gill, I., R. Lopez-Fandino, X. Jorba, and E. N. Vulfson. 1996. Biologically active peptides and enzymatic approaches to their production. Enzyme Microb Technol 18(3):163-83.
27. Gomi, K., Y. Iimura, and S. Hara. 1987. Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric. Biol. Chem. 51(9):2549-2555.
28. Gomi, K., K. Kitamoto, and C. Kumagai. 1992. Transformation of the industrial strain of Aspergillus oryzae with the homologous amdS gene as dominant selectable marker. Journal of Fermentation and Bioengineering 74(6):389-391.
29. Gouka, R. J., W. van Hartingsveldt, R. A. Bovenberg, C. A. van den Hondel, and R. F. van Gorcom. 1991. Cloning of the nitrate-nitrite reductase gene cluster of Penicillium chrysogenum and use of the niaD gene as a homologous selection marker. J Biotechnol 20(2):189-99.
30. Griffith, E. C., Z. Su, B. E. Turk, S. Chen, Y. H. Chang, Z. Wu, K. Biemann, and J. O. Liu. 1997. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol 4(6):461-71.
31. Gunnarsson, A., B. Svensson, B. Nilsson, and S. Svensson. 1984. Structural studies on the O-glycosidically linked carbohydrate chains of glucoamylase G1 from Aspergillus niger. Eur J Biochem 145(3):463-7.
32. Habibi-Najafi, M. B., and B. H. Lee. 1996. Bitterness in cheese: a review. Crit Rev Food Sci Nutr 36(5):397-411.
33. Hoek, K. S., J. M. Milne, P. A. Grieve, D. A. Dionysius, and R. Smith. 1997. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother 41(1):54-9.
34. Imamura, T., S. Kawata, K. Ninomiya, and S. Makisumi. 1983. Porcine liver aminopeptidase. Further characterization of its sulfhydryl groups. J Biochem (Tokyo) 94(1):267-73.
35. Ishibashi, N., K. Kouge, I. Shinoda, H. Kanehisa, and H. Okai. 1988. A mechanism for bitter taste sensibility in peptides. Agric. Biol. Chem. 52(3):819-827.
36. Ishibashi, N., T. Kubo, M. Chino, H. Fukui, I. Shinoda, E. KiKuchi, and H. Okai. 1988. Taste of proline-containing peptides. Agric. Biol. Chem 52(1):95-98.
37. Ishibashi, N., I. Ono, K. Kato, T. Shigenaga, I. Shinoda, H. Okai, and S. Fukui. 1988. Role of hydrophobic amino acid residue in the bitterness of peptides. Agric. Biol. Chem. 52(1):91-94.
38. Ishizaki, T., A. Tosaka, T. Nara, N. Aoshima, S. Namekawa, K. Watanabe, F. Hamada, A. Omori, and K. Sakaguchi. 2002. Leucine aminopeptidase during meiotic development. Eur J Biochem 269(3):826-32.
39. Ivanova, N. M., T. I. Vaganova, A. Strongin, and V. M. Stepanov. 1977. [Isolation and properties of leucine aminopeptidase from Aspergillus oryzae]. Biokhimiia 42(5):843-9.
40. Iwase, A., S. Nomura, and S. Mizutani. 2001. Characterization of a secretase activity for placental leucine aminopeptidase. Arch Biochem Biophys 393(1):163-9.
41. Kaminogawa, S. 1996. Food allergy, oral tolerance and immunomodulation--their molecular and cellular mechanisms. Biosci Biotechnol Biochem 60(11):1749-56.
42. Kubodera, T., N. Yamashita, and A. Nishimura. 2000. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem 64(7):1416-21.
43. Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacterophage T4. Nature 227:680-685.
44. Lalasidis, G. 1978. Four new methods of debittering protein hydrolysates and a fraction of hydrolysates with high content of essential amino acids. Ann Nutr Aliment 32(2-3):709-23.
45. Lewin, B. 2000. Genes VII. Oxford university press, New York.
46. Lockwood, L. B. 1974. The filamentous fungi. Arnold, London.
47. Manchenko, G. P. 1994. Handbook of detection of Enzymes on electrophoretic gels. CRC Press, Tokyo.
48. Marzluf, G. A. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61(1):17-32.
49. Matoba, N., H. Usui, H. Fujita, and M. Yoshikawa. 1999. A novel anti-hypertensive peptide derived from ovalbumin induces nitric oxide-mediated vasorelaxation in an isolated SHR mesenteric artery. FEBS Lett 452(3):181-4.
50. Mc Donnell, M., R. Fitzgerald, I. N. Fhaolain, P. V. Jennings, and G. O''Cuinn. 1997. Purification and characterization of aminopeptidase P from Lactococcus lactis subsp. cremoris. J Dairy Res 64(3):399-407.
51. Minamiura, N., Y. Matsumura, and T. Yamamoto. 1972. Bitter peptides in the casein digests with bacterial proteinase. II. A bitter peptide consisting of tryptophan and leucine. J Biochem (Tokyo) 72(4):841-8.
52. Miwa, M. 2000. Development of functional foods based on physiological activity of amino acids and peptides in Japan. Biofactors 12(1-4):161-5.
53. Morty, R. E., and J. Morehead. 2002. Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J Biol Chem 2:2.
54. Mow, B. M., A. L. Blajeski, J. Chandra, and S. H. Kaufmann. 2001. Apoptosis and the response to anticancer therapy. Curr Opin Oncol 13(6):453-62.
55. Nakadai, T., S. Nasuno, and N. Iguchi. 1973. Purification and properties of leucine aminopeptidase I from Aspergillus oryzae. Agr. Biol. Chem. 37(4):757-765.
56. Nakadai, T., S. Nasuno, and N. Iguchi. 1973. Purification and properties of leucine aminopeptidase II from Aspergillus oryzae. Agr. Biol. Chem. 37(4):767-774.
57. Nakadai, T., S. Nasuno, and N. Iguchi. 1973. Purification and properties of leucine aminopeptidase III from Aspergillus oryzae. Agr. Biol. Chem. 37(4):775-782.
58. Nakamura, Y., N. Yamamoto, K. Sakai, and T. Takano. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci 78(6):1253-7.
59. Nakata, T., M. Takahashi, M. Nakatani, R. Kuramitsu, M. Tamura, and H. Okai. 1995. Role of basic and acidic fragments in delicious peptides (Lys-Gly-Asp- Glu-Glu-Ser-Leu-Ala) and the taste behavior of sodium and potassium salts in acidic oligopeptides. Biosci Biotechnol Biochem 59(4):689-93.
60. Ney, K. H. 1979. Food taste chemistry. American Chemical Society, Washington, D. C.
61. Nierman, W. C., T. V. Feldblyum, M. T. Laub, I. T. Paulsen, K. E. Nelson, J. A. Eisen, J. F. Heidelberg, M. R. Alley, N. Ohta, J. R. Maddock, I. Potocka, W. C. Nelson, A. Newton, C. Stephens, N. D. Phadke, B. Ely, R. T. DeBoy, R. J. Dodson, A. S. Durkin, M. L. Gwinn, D. H. Haft, J. F. Kolonay, J. Smit, M. B. Craven, H. Khouri, J. Shetty, K. Berry, T. Utterback, K. Tran, A. Wolf, J. Vamathevan, M. Ermolaeva, O. White, S. L. Salzberg, J. C. Venter, L. Shapiro, C. M. Fraser, and J. Eisen. 2001. Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A 98(7):4136-41.
62. Noguchi, M., S. Arai, M. Yamashita, H. Kato, and M. Fujimaki. 1975. Isolation and identification of acidic oligopeptides occurring in a flavor potentiating fraction from a fish protein hydrolysate. J Agric Food Chem 23(1):49-53.
63. Oliveira, S. M., J. O. Freitas, Jr., and K. B. Alves. 1999. Rabbit kidney aminopeptidases: purification and some properties. Immunopharmacology 45(1-3):215-21.
64. Orejas, M., E. A. Espeso, J. Tilburn, S. Sarkar, H. N. Arst, Jr., and M. A. Penalva. 1995. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev 9(13):1622-32.
65. Pautot, V., F. M. Holzer, J. Chaufaux, and L. L. Walling. 2001. The induction of tomato leucine aminopeptidase genes (LapA) after Pseudomonas syringae pv. tomato infection is primarily a wound response triggered by coronatine. Mol Plant Microbe Interact 14(2):214-24.
66. Praekelt, U. M., and P. A. Meacock. 1992. MOL1, a Saccharomyces cerevisiae gene that is highly expressed in early stationary phase during growth on molasses. Yeast 8(9):699-710.
67. Pulido-Cejudo, G., B. Conway, P. Proulx, R. Brown, and C. A. Izaguirre. 1997. Bestatin-mediated inhibition of leucine aminopeptidase may hinder HIV infection. Antiviral Res 36(3):167-77.
68. Raeder, U., and P. Broda. 1985. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1:17-20.
69. Rival, S. G., C. G. Boeriu, and H. J. Wichers. 2001. Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49(1):295-302.
70. Sambrook, J., and D. W. Russell. 2001. Molecular Cloning: a laboratory manual, third edition. Cold Spring Harbor Laboratory Press, New York.
71. Sato, R., T. Noguchi, and H. Naito. 1986. Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. J Nutr Sci Vitaminol (Tokyo) 32(1):67-76.
72. Schoolnik, G. K., and F. H. Yildiz. 2000. The complete genome sequence of Vibrio cholerae: a tale of two chromosomes and of two lifestyles. Genome Biol 1(3).
73. Shiba, Y., C. Ono, F. Fukui, I. Watanabe, N. Serizawa, K. Gomi, and H. Yoshikawa. 2001. High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci Biotechnol Biochem 65(1):94-101.
74. Slott, V. L., S. C. Jeffay, C. J. Dyer, R. R. Barbee, and S. D. Perreault. 1997. Sperm motion predicts fertility in male hamsters treated with alpha- chlorohydrin. J Androl 18(6):708-16.
75. Stewart, P., R. E. Whitwam, P. J. Kersten, D. Cullen, and M. Tien. 1996. Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 62(3):860-4.
76. Strater, N., and W. N. Lipscomb. 1995. Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry 34(45):14792-800.
77. Takahashi, M., H. Fukunaga, H. Kaneto, S. Fukudome, and M. Yoshikawa. 2000. Behavioral and pharmacological studies on gluten exorphin A5, a newly isolated bioactive food protein fragment, in mice. Jpn J Pharmacol 84(3):259-65.
78. Takayanagi, T., A. Kimura, S. Chiba, and K. Ajisaka. 1994. Novel structures of N-linked high-mannose type oligosaccharides containing alpha-D-galactofuranosyl linkages in Aspergillus niger alpha- D-glucosidase. Carbohydr Res 256(1):149-58.
79. Tan, P. S., T. A. van Kessel, F. L. van de Veerdonk, P. F. Zuurendonk, A. P. Bruins, and W. N. Konings. 1993. Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol 59(5):1430-6.
80. Tilburn, J., S. Sarkar, D. A. Widdick, E. A. Espeso, M. Orejas, J. Mungroo, M. A. Penalva, and H. N. Arst, Jr. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. Embo J 14(4):779-90.
81. Tomita, M., W. Bellamy, M. Takase, K. Yamauchi, H. Wakabayashi, and K. Kawase. 1991. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74(12):4137-42.
82. Trail, F., N. Mahanti, and J. Linz. 1995. Molecular biology of aflatoxin biosynthesis. Microbiology 141(Pt 4):755-65.
83. Uh, Y., J. S. Son, I. H. Jang, K. J. Yoon, and S. K. Hong. 2002. Penicillin-resistant Aerococcus viridans Bacteremia Associated with Granulocytopenia. J Korean Med Sci 17(1):113-5.
84. Underkofler. 1976. Microbial enzymes. McGraw-Hill, New York.
85. Van Heeke, G., S. Denslow, J. R. Watkins, K. J. Wilson, and F. W. Wagner. 1992. Cloning and nucleotide sequence of the Vibrio proteolyticus aminopeptidase gene. Biochim Biophys Acta 1131(3):337-40.
86. Watanabe, M., J. Shimizu, and S. Arai. 1990. Debittering of tryptic hydrolysate of casein by incubating with the ice nucleationactive basterium, Erwinia ananas, and its aminopeptidase at low temperature. Agric. Biol. Chem. 54(12):3351-3353.
87. Watson, A. J., L. J. Fuller, D. J. Jeenes, and D. B. Archer. 1999. Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae. Appl Environ Microbiol 65(1):307-10.
88. Yokoyama, K., H. Chiba, and M. Yoshikawa. 1992. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci Biotechnol Biochem 56(10):1541-5.
89. Yoshikawa, M., H. Fujita, N. Matoba, Y. Takenaka, T. Yamamoto, R. Yamauchi, H. Tsuruki, and K. Takahata. 2000. Bioactive peptides derived from food proteins preventing lifestyle- related diseases. Biofactors 12(1-4):143-6.
90. Zurlinden, A., and M. E. Schweingruber. 1994. Cloning, nucleotide sequence, and regulation of Schizosaccharomyces pombe thi4, a thiamine biosynthetic gene. J Bacteriol 176(21):6631-5.
91. 林瑩楨、李河水、華傑。2001。機能性蛋白質在食品加工之應用。經濟部產業技術資訊服務推廣計劃。
92. 陳怡宏。1999。生物活性胜肽及其合成。食品工業月刊,胜肽專輯,1-18頁。
93. 林錫杰。1999。利用生物技術改良製造醬油用麴菌。食品工業月刊,胜肽專輯,51-62頁。
94. 趙秀慧。2000。Aspergillus oryzae Leucine Aminopeptidase 基因的選殖。碩士論文,分子生物學研究所,中興大學,台中。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top