跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許碧珠
研究生(外文):Pi-Chu Hsu
論文名稱:Streptomyces表現載體的構築及其應用於clavulanicacid之生產
論文名稱(外文):Construction of Expression Vector for Streptomyces sp. and Its Application in Clavulanic Acid Production
指導教授:許文輝許文輝引用關係
指導教授(外文):Hsu Wen-Hwei
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:79
中文關鍵詞:放線菌表現系統
外文關鍵詞:Streptomycesexpression vector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本實驗的目的除了建立Streptomyces的轉型系統外,並在Streptomyces中找出具誘導性且為較強勢的啟動子,希望藉此建立一個經濟且高效率的表現系統來大量表現異源性基因,除此之外,也希望將此表現系統應用於clavulanic acid的生合成。將 S. lividans TK64 培養 36 小時,當菌體量達達 0.7 ml/ml PCV (Packed cell volume)時,此種菌體可產生最多量的原生質體,濃度達 2.3×1010 CFU/ml。進行轉形的 DNA 濃度愈高,其轉形效率愈好,而且利用 PEG8000 最適合S. lividans TK64原生質體轉形作用,最高轉形效率可達 5.1×104 transformants/μg DNA。本研究也將 S. lividans TK24的 xlnA 及 xlnB 基因之啟動子區 (promoter region) 選殖於報導基因 (Pseudomonas putida 的 xylE 基因) 的 5 端,在轉形至 E. coli ,利用 1% xylan 或 1mM IPTG 誘導下,發現包含xlnA 基因上游區 600bp 啟動子片段的轉形株 E. coli (pUC-XA) 表現最好,catechol dioxygenase 之比活性達 75U/mg。xlnB 基因之啟動子區,則是包含 xlnB 基因上游區 650bp 啟動子片段帶動xylE基因的表現最佳,E. coli (pUC-XB) 之catechol dioxygenase 比活性達 650U/mg。將這些構築轉形入 S. lividans TK64,於 NMMP broth 內以 1% xylan 誘導,S. lividans (pIJ-XA) 之 xylE 基因表現最好,catechol dioxygease 比活性達 750mU/mg,而 xlnB 啟動子中則以S. lividans (pIJ-XBS) 之xylE 基因的表現最好, catechol dioxygenase 比活性達 200mU/mg。

中文摘要…………………………………………………………………1
前 言………………………………………………………………….3
材料與方法……………………………………………………………….11
一、 藥品……………………………………………………………….…11
二、 菌株、質體及培養基…………………………………………….…11
三、 E. coli 質體 DNA 的抽取與DNA片段的回收……………….…13
四、 S. lividans TK24 染色體 DNA 的抽取…………………………...14
五、 DNA 的定序與洋菜膠電泳分析…………………………………..14
六、 DNA 純度之鑑定及定量分析……………………………………..15
七、 引子的設計………………………………………………………….15
八、 聚合酉每鍊鎖反應…………………………………………………….16
九、 DNA 黏接反應……………………………………………………...17
十、 質體轉形作用………………………………………………….…….17
十一、 蛋白質之定量、電泳……………………………………………17
十二、 S. lividans TK64 轉形系統的建立……………………………..18
1.原生質體的製備………………………………………………..18
2.原生質體的轉形作用…………………………………………..19
3.小量製備放線菌之質體………………………………………..20
十三、Strptomyces lividans TK64 利用原生質體法轉形最佳條件之探討
1. 不同生長階段的菌絲對原生質體生成數的影響……………21
2. DNA 濃度對轉形株數目的影響…………………………..…21
3. 不同分子量的 PEG 對轉形效率的影響…………………….22
十四、含 xlnA 或 xln B 基因啟動子之質體之構築……………………22
十五、xln 基因啟動子在 E. coil的表現能力……………………………24
(1) 平板分析法…………………………………………………….24
(2) 酵素活性分析法……………………………………………….24.
十六、 xln 基因啟動子基因選殖入 S. lividans 載體 pIJ702……….25
十七、 xln 基因起動子在 S. lividans TK64 之表現能力…………...26
十八、 Xylan 濃度對 xln 基因啟動子活性的影響………………….27
十九、Clavulanic acid 生合成基因串之組裝…………………………27
(1) pUC19ST表現載體之構築……………………………….27
(2) 將 clavulanic acid 基因選殖入 pUC19ST………………..28
結 果
一、 S. lividans TK64 原生質體轉法形最佳條件之探討……………29
(1) 不同生長階段的菌絲對原生質體生成的影響…………….29
(2) DNA 濃度對轉形的影響……………………………………29
(3) PEG 對轉形效率的影響…………………………………….29
二、 xln 基因啟動子在 E. coil 中之表現能力……………………….30
三、 xln 基因啟動子在S. lividans TK64中之表現能力……………...31
四、基質濃度對 xln 基因啟動活性的影響……………………………32
五、Clavulanic acid 生合成基因串之組裝……………………………..33
討 論
一、 xln 基因啟動子在E. coil之功能性………………………………35
二、 xln 基因啟動子的長度與基因在 S. lividans TK64 表現之關係..37
三、Streptomyces spp.基因啟動子強度之比較………………………….39
四、利用 Streptomyces 表現系統生產 clavulanic acid………………..40
圖表……………………………………………………………………….42
參考文獻………………………………………………………………….74

1. Adhya, S., and W. Miller. 1979. Modulation of the two promoters of the galactose operon of E.coli. Nature 279:492-494.
2. Bachmann BO, L. R., Townsend CA. 1998. beta-Lactam synthetase: a new biosynthetic enzyme. Proc. Natl. Acad. Sci. U S A. 95:9082-9086.
3. Bertrand, J. L., Morosoli, r., sHARECK, F., and Kluepfel, D.,. 1989. Expression of the xylanase gene of Streptomyces lividans and production of the enzyme on natural substrates. Biotechnol. Bioeng. 33:791-794.
4. Bibb, M. J., and S. N. Cohen. 1982. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol. Gen. Genet. 187:265-277.
5. Bibb MJ, W. J., Hopwood DA. 1978. Transformation of plasmid DNA into Streptomyces at high frequency. Nature. 284:526-531.
6. Brawner, M., Poste, G., Rosenberg, M., and Westpheling, J.,. 1991. Streptomyces : a host for heterologous gene expression. Curr. Opin. Biotechnol. 2:674-681.
7. Buttner, M. J., I. M. Fearnley, and M. J. Bibb. 1987. At agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequences and transcriptional analysis. Mol. Gen. Genet. 209:101-109.
8. Chater, K. F., C. J. Bruton, K. A. Plaskitt, M. J. Buttner, C. Mendez, and J. D. Helmann. 1989. The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility sigma factor of B. subtilis. Cell 59(1):133-43.
9. Collado-Vides J, M. B., Gralla JD. 1991. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev. 55:371-394.
10. D. Tremblay, J. L., C. Dupont, and R. Morsoli. 2002. Hight-level heterologous expression and secretion in Streptomyces lividans of two major antigenic proteins from Mycobacterium tuberculosis. Can. J. Microbiol. 48:43-48.
11. Delic, I., P. Robbins, and J. Westpheling. 1992. Direct repeats are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc. Natl. Acad. Sci. USA 89:1885-1889.
12. dos Santos WG, B. G. 2000. Simultaneous stable expression of neomycin phosphotransferase and green fluorescence protein genes in Trypanosoma cruzi. J Parasitol. 86:1681-1688.
13. Ebright, R. 1986. Proposed amino acid-base pair contacts for 13 sequence-specific DNA binding proteins. Alan R. Liss, Inc., New York:2130-2134.
14. Eckhardt T, S. J., Gorniak L, Burnett WV, Fare LR. 1987. Characterization of the promoter, signal sequence, and amino terminus of a secreted beta-galactosidase from "Streptomyces lividans". J Bacteriol. 169:4249-4256.
15. Fornwald, J. A., Donovan, M. J., Gerber, R., Keller, J., Yaylor, D.P., Arcuri, E. J., and Brawner, M. E. 1993. Soluble forms of the human T cell receptor CD4 are efficiently expressed by Streptomyces lividans. Biotechnology. 11:1031-1036.
16. Fornwald JA, D. M., Gerber R, Keller J, Taylor DP, Arcuri EJ, Brawner ME. 1993. Soluble forms of the human T cell receptor CD4 are efficiently expressed by Streptomyces lividans. Biotechnology. 11:1031-1036.
17. Fornwald, M., and B. Jaurin. 1987. Chromogenic identification of promoters in Streptomyces lividans by using an ampC beta-lactamase promoter-probe vector. Mol. Gen. Genet. 210:23-32.
18. Forsman M, J. B. 1987. Chromogenic identification of promoters in Streptomyces lividans by using an ampC beta-lactamase promoter-probe vector. Mol Gen Genet. 1987:23-32.
19. Giannotta, F., J. Georis, A. Moreua, C. Mazy-Servais, B. Joris, and J. Dusart. 1996. A sequence-specific DNA-binding protein interacts with the xlnC upstream region of Streptomyces sp. strain EC3. FEMS Microbiol. Lett. 142:91-97.
20. Hannig, G. a. S. C. M. 1998. Strategies for optimizing heterologous protein expression in Escherichia coli. TIBTECH 16:54-60.
21. Hodgson, D. A., and K. F. Chater. 1981. A chromosomal locus controlling extracellular agarase production by Streptomyces coelicolor A3(2) , and its inactivation by chromosomal integration of plasmid SCP1. J. Gen. Microbiol. 124:339-348.
22. Hodgson, D. A. 1982. glucose repression of carbon source uptake in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J.GEN.Microbiol. 128:2417-2430.
23. Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, and H. Schrempf. 1985. Genetic manipulation of Streptomyces: a laboratory manual.
24. Horinouchi, S., and T. Beppu. 1985. Construction and application of a promoter-probe plasmid that allows chromogenic identification in Streptomyces lividans. J. Bacteriol. 162:406-412.
25. Ingram, C., M. Brawner, P. Youngman, and J. Westpheling. 1989. xylE function as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J. Bacteriol. 171:6617-6624.
26. JD, G. 1991. Transcriptional control--lessons from an E. coli promoter data base. cell 66:415-418.
27. JY., C. 1990. Production, properties, and thrombin inhibitory mechanism of hirudin amino-terminal core fragments. J Biol Chem. 265:22159-22166.
28. K., L. U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature. 227:680-685.
29. Karkhoff-Schweizer RR, S. H. 1994. Utilization of a mini-Dlac transposable element to create an alpha-complementation and regulated expression system for cloning in Pseudomonas aeruginosa. gene. 140:7-15.
30. Kendall, K. a. C., J.,. 1984. Cloning and expression of an extracellular-agarase gene from Streptomyces coelicolor A3(2) in Streptomyces lividans 66. gene 29:315-321.
31. KF, C. 1993. Genetics of differentiation in Streptomyces. Ann.Rev.Microbiol. 47:685-713.
32. Koller KP, R. G. 1989. Heterologous expression of the alpha-amylase inhibitor gene cloned from an amplified genomic sequence of Streptomyces tendae. J Bacteriol. 171:4953-4957.
33. Li R, K. N., Townsend CA. 2000. Expansion of the clavulanic acid gene cluster: identification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Bacteriol. 182:4087-4095.
34. M., B. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254.
35. Madrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological reviews. 60:512-538.
36. Malin, G. M. a. G. I. B. 1991. Phosphotransferase dependent glucose transport in Corynebacterium glutamicum. J. Appl. Bact. 71:517-523.
37. Marsh EN, C. M., Townsend CA. 1992. Two isozymes of clavaminate synthase central to clavulanic acid formation: cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry. 31:12648-12657.
38. Mattern, S. G., Brawner, M. E. and Westpheling, J. 1993. Indentification of a complex operator for galP1, the glucose sensitive, galactose-dependent promoter of the Streptomyces galactose operon. J. Bacteriol. 175.
39. Michel Gilbert, R. M., Francois Shareck, and Dieter Kluepfel. 1995. Production and secretion of proteins by Streptomycetes. Critical reviews in biotechnology. 15:13-39.
40. Miyashita K, F. T., Saito A. 2000. Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources. Biosci Biotechnol Biochem. 64:39-43.
41. Mosher RH, P. A., Anders C, Barton B, Jensen SE. 1999. Genes specific for the biosynthesis of clavam metabolites antipodal to clavulanic acid are clustered with the gene for clavaminate synthase 1 in Streptomyces clavuligerus. Antimicrob Agents Chemother. 43:1215-1224.
42. Munoz A, P.-A. A., Barbero JL. 1985. Cloning and expression of human interleukin 2 in Streptomyces lividans using the Escherichia coli consensus promoter. Biochem Biophys Res Commun. 133:511-519.
43. Musso, R. E., R. DeLauro, S. Adhya, and B. de Crombrugghe. 1977. Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell 12:847-854.
44. Novotna, J., and Z., Hpstalek. 1985. Phosphorylation of hexoses in Streptomyces aureofaciens: evidence that phosphoenolpyruvate: sugar phosphotransferase system is not operative. FEMS. Microbiol. Lett. 28:347-350.
45. Paradkar AS, A. K., Jensen SE. 1998. A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol. 27:831-843.
46. Perez-Gonzalez JA, V. J., Jimenez A. 1985. The mechanism of resistance to puromycin and to the puromycin-precursor O-demethyl-puromycin in Streptomyces alboniger. J Gen Microbiol. 131:2877-2883.
47. Perez-Llarena FJ, L. P., Rodriguez-Garcia A, Martin JF. 1997. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds. J. Bacteriol. 179:2053-2059.
48. Pin, O. a. M. I. 1999. Expression and secretion of proteins in E. coli. Mol. Biotech. 12:25-34.
49. RJ., K. 2000. Overview of vector design for mammalian gene expression. Mol Biotechnol. 16:151-160.
50. Rodicio, M. R., C. J. Bruton, and K. F. Chater. 1985. New derivatives of the Streptomyces temperate phage c31 useful for cloning and functional analysis of Streptomyces DNA. Gene. 34:283-292.
51. Rosenberg, M. M. B., J. Gorman, and M. Reff. 1986. Galactokinase gene fusion in the study of gene regulation in E.coli , Streptomyces, yeast, and highter cell systems. Genetic engineering. 8:151-181.
52. Sambrook J., E. F. F. a. T. M. 2001. Molecular cloning : a laboratory manual.
53. Schauer, A., M. Ranes, R. Santamaria, J. Guijarro, E. Lawlor, C. Mendez, K. Chater, and R. Losick. 1988. Visualizing gene expression in time and space in the filamentous bacterium Streptomyces coelicolor. Science. 240:768-772.
54. Schlosser A, S. H. 1996. A lipid-anchored binding protein is a component of an ATP-dependent cellobiose/cellotriose-transport system from the cellulose degrader Streptomyces reticuli. Eur J Biochem. 242:332-338.
55. Shiba, Y., C. Ono, F. Fukui, I. Watanabe, N. Serizawa, K. Gomi. and H. Yoshikawa. 2001. High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci. Biotechnol. Biochem. 65:94-101.
56. Smith, C. P., and Chater, K. F. 1988. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 204:569-580.
57. Smith, Z. H. a. C. P. 1994. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Molecular Microbiology. 12:737-745.
58. Stein DS, K. K., Cohen SN. 1989. Identification and analysis of transcriptional regulatory signals for the kil and kor loci of Streptomyces plasmid pIJ101. J Bacteriol 171:5768-5775.
59. Strohl, W. R. 1992. Compilation and analysis of DNA sequences associated with apparent Streptomycete promoters. Nucleic Acids Research. 20:961-974.
60. Theberge, M., Lacaze, P., Shareck, F., Morosoli, R., and Kluepfel, D.,. 1992. Purification and characterization of an endoglucanase from Streptomyces lividans 66 and DNA sequence of the gene. Appl. Environ. Microbiol 58:815-820.
61. Tobias Kieser, M. J. B., Mark J. Buttner, Keith F.Chater, David A. Hopwood. 2000. Practical Streptomyces genetics.
62. Udaka, S., and H. Yamagata. 1993. High-level secretion of heterologous proteins by Bacillus brevis. Methods Enzymol. 217:23-33.
63. Ward JM, J. G., Kieser T, Bibb MJ, Buttner MJ, Bibb MJ. 1986. Construction and characterization of a series of mutli-copy promorer-probe vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203-211:468.
64. Westpheling., C.-c. a. J. 1998. Partial characterization of the Streptomyces lividans xlnB promoter and its use for expression of a thermostable xylanase from thermotoga maritima. Applied and Environmental Microbiology. 64:4217-4225.
65. Wu TK, B. R., Houston TA, McIlwaine DB, Egan LA, Townsend CA. 1995. Identification, cloning, sequencing, and overexpression of the gene encoding proclavaminate amidino hydrolase and characterization of protein function in clavulanic acid biosynthesis. J. Bacteriol. 177:3714-3720.
66. Wu, Z. R., B. J. Qi, R. Q. Jiao, F. D. Chen, and L. F. Wang. 1991. Development of a novel Bacillus subtilis cloning system employing its neutral protease as screen marker. Gene 106(1):103-107.
67. Yang, V. W., J. A. Marks, B. P. Davis, and T. W. Jeffries. 1994. High- efficiency transformation of Pichia stiptis based on it URA3 gene and a homologous autonomous replication sequence, ARS2. 60:4245-4254.
68. Zukowski MM, G. D., Speck D, Kauffmann M, Findeli A, Wisecup A, Lecocq JP. 1983. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci U S A. 80:1101-1105.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top