跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:甘淑貞
研究生(外文):Shwu-Jen Gan
論文名稱:P-450monooxygenaseP-450reductase及Redoxin基因的選殖表現及其對於轉換Compactin成Pravastatin時的應用
論文名稱(外文):Cloning and Expression of P-450 monooxygenase P-450 Reductase and Redoxin Gene and It''s Application in the Conversion of Compactin to Pravastatin
指導教授:許文輝許文輝引用關係
指導教授(外文):Hsu Wen-Hwei
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:104
中文關鍵詞:主題編目分類法
外文關鍵詞:Subject CatalogingClassification
相關次數:
  • 被引用被引用:4
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
由Streptomyces sp. 所選殖出的cytochrome P-450 monooxygenase gene轉型至Escherichia coli或S. lividans中,發現轉型菌株將compactin轉換成pravastatin的能力有限,這些數據顯示可能需要P-450 reductase基因搭配,才能提昇其轉換效率。比對已知的P-450 reductase基因的高度保留區域,根據其胺基酸序列設計退化性引子(degenerated primer),以Amycolata autotrophica CCRC 12444及Streptomyces griseolus CCRC 13677的染色體DNA作為模板,利用nested PCR,可以分別合成一DNA片段。上網比對確定此片段為P-450 reductase基因的一部份,其中,以A. autotrophica的染色體DNA當作模板所合成的DNA片段和已發表的Bacillus subtilis NADPH-P450 reductase基因比對,相似度為72﹪;以S. griseolus的染色體DNA當作模板所合成的DNA片段和已發表的B. subtilis NADPH-P450 reductase基因比對,相似度為70﹪。並以此片段作為探針(probe),由A. autotrophica和S. griseolus的部分染色體基因庫(partial library)以Southern blot的方式繼續進行篩選出完整的P-450 reductase基因。為得到更長的探針,於是再設計一組退化性引子,並由所得到的250 bp DNA片段中設計一組專一性引子,以S. griseolus的染色體DNA當作模板進行PCR,得到一約800 bp DNA片段,經上網比對後發現此片段類似redoxin基因片段,並以此片段當作探針篩選得到全長的基因。Redoxin基因全長276 bp,此段ORF可以轉譯出91個胺基酸,預估分子量為10.6kDa,其G+C含量為67.8%,由胺基酸組成估算此蛋白質疏水性胺基酸含量為34.1%,極性胺基酸含量為17.6%,等電點為7.16,pH 7.0時所帶的電量為0.17。將redoxin基因選殖入E. coli表現載體pET21b中,並使其大量表現,再利用帶有金屬的親和性管柱來回收redoxin。另一方面,將已發表的B. subtilis NADPH P-450 reductase基因利用兩組specific primer從B. subtilis DB2 中選殖出來。所得到兩個NADPH P-450 reductase基因分別命名為yetO ( yfnJ )和yrhJ,彼此間的胺基酸序列相似度為61%,yetO 基因全長3,183 bp,此段ORF可以轉譯出1061個胺基酸,預估分子量為116.7 kDa;yrhJ 基因全長為3,162 bp,此段ORF可以轉譯出1054個胺基酸,預估分子量為115.9 kDa。其G+C含量依次為50.8%、46.6%。將yetO、yrhJ基因分別選殖入表現載體pQE-30中,並使其在E. coli Nova Blue中大量表現,惟yetO 基因無法大量表現。隨後利用帶有金屬的親和性管柱來回收P-450 reductase。在菌體內的分析結果指出,單獨攜帶redoxin及yrhJ 基因的E. coli轉型株無法將Na-compactin轉換成為pravastatin。再以經由 compactin 誘導 2~3 天之放線菌菌體萃取液來當作此催化反應系統,當單獨加入P450 monooxygenase時,可提升其轉換率,表示P450 monooxygenase在此反應條件下具有轉換compactin成pravastatin的能力,提高約1.0 %,此時再加入純化之 redoxin 或 P450 reductase 並搭配純化之 P450 monooxygenase 進行酵素反應,也會有 pravastatin 的生成, 但轉換率提昇的比率最高只有1.1 %。
Abstract
Cytochrome P-450 monooxygenase gene cloned from Streptomyces sp. was transformed into Escherichia coli or S. lividans. It was found that transformants have poor abilities to convert the compactin to pravastatin. These data show that cytochrome P-450 reductase may be needed to participate the reaction, then the conversion efficiency can be elevated. Four primers were designed according to the conserved region of P-450 reductase genes. A DNA fragment was amplified from Streptomyces spp. chromosomal DNA using nested polymerase chain reaction. DNA sequence analysis revealed that this DNA fragment belongs to part of P-450 reductase gene. Amino acid sequence of this fragment shows 70 % identity with NADPH-P450 reductase gene from B. subtilis. Using this P-450 reductase gene fragment as probe, the full length of the P-450 reductase gene was screened by Southern blot. Two degenerated primers and two specific primers were designed to gain longer DNA as probe, A 800 bp DNA fragment was amplified from S. griseolus chromosomal DNA. DNA sequence analysis revealed that this DNA fragment implies a redoxin gene. The ORF of redoxin gene consisted of 276 bp and predicted to encode a protein with a calculated molecular mass of 10.6 kDa. The GC content of this gene was 67.8 %, the polar amino acid content of redoxin was 17.6 %, pI was 7.16 and the charge was 0.17 while pH 7.0. Redoxin gene was cloned into pET-21b expression vector and expressed in E. coli BL21(DE3). The enzyme was purified by metal chelate column chromatography. Meanwhile, NADPH-P450 reductase genes were cloned from B. subtilis with specific primers. Two NADPH-P450 reductase gene, named yetO ( yfnJ ) and yrhJ ,showed 61% amino acid identity with each other. The ORF of yetO gene consisted of 3,183 bp and predicted to encode a protein with a calculated molecular mass of 116.7 kDa. The ORF of yrhJ gene consisted of 3,162 bp and predicted to encode 1054 amino acids with a calculated molecular mass of 115.9 kDa. The GC contents of yetO and yrhJ genes were 50.8% and 46.6%, respectively. The yrhJ gene was cloned into pQE-30 expression vector and expressed in E. coli Nova Blue. The P450 enzymes were also purified by metal chelate column chromatography. This enzyme can’t convert compactin to pravastatin. Cell crude extract of Streptomyces spp. which was induced by adding compactin as the catalytic reaction system. Adding solely P450 monooxygenase,the conversion system of compactin to pravastatin is worked, the result shows P450 monooxygenase has the ability to convert the compactin to pravastatin with the elevated conversion ratio of 1.0 %. Adding redoxin or P450 reductase with P450 monooxygenase in this enzyme reaction, pravastatin can be produced and the elevated conversion ratio is 1.1 %.
目錄
中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………4
前言………………………………………………………………………7
材料與方法
一、 藥品……………………………………………………………18
二、 菌株、質體及培養基…………………………………………18
三、 E. coli 質體DNA的小量抽取……………………………………19
四、 DNA的洋菜膠體電泳分析……………………………………..20
五、 DNA片段的回收及純化………………………………………...20
六、 DNA純度之鑑定及定量分析…………………………………..22
七、 DNA黏接反應…………………………………………………...22
八、 引子的設計……………………………………………………23
九、 退化性引子的設計……………………………………………24
十、 聚合酉每連鎖反應………………………………………………25
十一、 質體轉型作用
(1) E. coli的質體轉型…………………………………………27
(2) B. subtilis DB2的轉型作用………………………………….27
十二、 P450 reductase基因的選殖
(1) S. griseolus染色體DNA的抽取……………………………..28
(2) B. subtilis染色體DNA的抽取………………………………28
(3) DNA 探針的製備…………………………………………..29
(4) 南方轉漬雜交法………………………………………….30
(5) S. griseolus染色體部分基因庫的建立…………………….31
(6) 菌落雜交法………………………………………………..32
十三、 P450 reductase基因在E. coli的表現
(1) 將來自於B. subtilis NADPH-P450 reductase基因選殖入E. coli..33
(2) P450 reductase基因的大量表現…………………………..33
(3) P450 reductase的純化……………………………………..34
十四、 Redoxin基因在E. coli的表現
(1) 將來自於S. griseolus的redoxin基因選殖入E. coli…………35
(2) Redoxin基因的大量表現…………………………………...35
(3) Redoxin的純化……………………………………………...35
十五、 P450 reductase基因在放線菌菌體內活性的分析
(1) 放線菌接種量的標準化…………………………………..36
(2) 放線菌菌體外之生物轉換………………………………..36
(3) 以高效液相層析法分析compactin及pravastatin…………37
十六、 分析compactin及pravastatin之穩定性………………………..38
十七、 蛋白質之定量
(1) 製作標準曲線…………………………………………….38
(2) P450 reductase濃度的測定………………………………..38
十八、蛋白質的電泳分析……………………………………………..39
結果
一、 能將compactin轉換成parvastatin菌株的篩選………………42
二、 P450 reductase基因的篩選
(一) Streptomyces spp.部分
1、 探針的設計………………………………………...42
2、 S. griseolus部分染色體基因庫的構築……………...44
3、 Redoxin基因的選殖…………………………………44
4、 Redoxin基因在E. coli之大量表現…………………..45
5、 Redoxin基因在放線菌菌體內的表現情形…………45
(二) Bacillus 部分
1、 NADPH-P450 reductase基因的選殖…………………..46
2、 NADPH-P450 reductase基因在E. coli之大量表現…….47
3、 NADPH-P450 reductase基因在B. subtilis之大量表現…48
4、 NADPH-P450 reductase基因在放線菌菌體內的表現...48
三、 compactin及pravastatin之pH穩定性………………………….49
討論
一、 Redoxin基因的胺基酸序列…………………………………..50
二、 Redoxin及P450 reductase基因在E. coli菌體內的表現………51
三、 Redoxin及P450 reductase基因在放線菌菌體內的表現……..53
四、 Compactin及pravastatin之pH穩定性…………………………53
圖表……………………………………………………………………...55
參考文獻……………………………………………………………….101
參考文獻
1. 1991. Advances in Applied Microbiology, vol. 36. Academic Press.
2. 1997. Biotechnology of Antibiotics, vol. Second edition. Marcel Dekker, Inc, New York.
3. 1995. Cytochrome P450: Structure, Mechanism, and Biochemistry, vol. second edition. Plenum Press, New York.
4. 2000. Stereoselective Biocatalysis. Marcel Dekker, Inc, New York.
5. Kunz , D.A and F. S. Sariaslani. 1986. Induction of cytochrome P-450 in Streptomyces griseus by soybean flour. Biochem. Biophys. Res. Commun 140:650-659.
6. Daniel, P.O''Keefe., J. A. Romesser and K. J. Leto. 1988. Identification of constitutive and herbicide inducible cytochrome P-450 in Streptomyces griseolus. Microbiology 149:406-412.
7. Davidson, C. M and E. F. Hartree. 1968. Cytochrome as a guide to classifying bacteria: taxonomy of Microbacterium thermosphactum. Nature 220(166):502-4.
8. Dus, K. 1975. On the structure of putidaredoxin and cytochrome P-450 cam and their mode of interaction. Adv Exp Med Biol 58(00):287-309.
9. Feyereisen, M. B and M. a. R. 2000. Interaction of NADP(H) with Oxidized and Reduced P450 Reductase during Catalysis. Studies with Nucleotude Analogues. Biochemistry 39:5066-5074.
10. Fieschi, F., E. Torrents, L.Toulokhonova, A. Jordan, U. Hellman, J. Barbe, I. Gibert, M. Karlsson and B. M. Sjoberg. 1998. The manganese-containing ribonucleotide reductase of Corynebacterium ammoniagenes is a class Ib enzyme. J Biol Chem 273(8):4329-37.
11.Klein, M. L and A. J. Fulco. 1993. Critical Residues Involved in FMN Binding and Catalytic Activity in Cytochrome P450BM-3. The Journal of Biological Chemistry 268(10):7553-7561.
12. Goewert, D.K., C. C. Weaver, D. Carey and C.A. Appleby. 1976. P450 heme-proteins of Rhizobium japonicum : Purification by affinity chromatography and relationship to P450cam and P450LM-2. Biochem.Biophys. Res.Commun 69:437.
13. Stephen, G. S and I. C. Gunsalus. 1979. Proton Coupling in the Cytochrome P-450 Spin and Redox Equilibria. Biochemistry 18(11):2290-2295.
14. Henry W. Strobel, A. V. H., and Sijiu Shen. 1995. Cytochrome P450: Structure, Mechanism, and Biochemistry, vol. Second Edition. Plenum Press, New York.
15. Holde, C. K. M. a. K. E. V. 1996. Biochemistry, vol. Second Edition. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA.
16. Hutchinson, S. A. 1987. Macrolide antibiotic biosynthesis: Isolation and properties of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythraea (Streptomyces erythreus). Biochem 26:6204-6210.
17. Watanabe, I. F. Nara and N. Serizawa. 1995. Cloning, characterization and expression of the gene encoding cytochrome P-450sca-2 from Streptomyces carbophilus involved in production of pravastatin, a specific HMG-CoA reductase inhibitor. Gene 163:81-85.
18. Julian, P. 1971. Camphor binding by Pseudomonas putida cytochrome P-450. Arch. Biochem. Biophys. 144:678-693.
19. Jones, C. W. 1980. Cytochrome patterns in classification and identification including their relevance to the oxidase test. Soc Appl Bacteriol Symp Ser 8:127-38.
20. Koga, T., Y. Shimada, M. Kuroda, Y. Tsujita, K. Hasegawa and M. Yamazaki. 1990. Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a specific inhibitor of HMG-CoA reductase. Biochem. Biophys. Acta 1045:115-120.
21. Andrew, W. M., J. G. Lindsay. 1996. Bacterial cytochrome P-450. Molecular Microbiology 20(6):1115-1125.
22. Marat, B. M., A. Arino,V. M. Guzov and R. Feyereisen. 1999. Kinetic mechanism of cytochrome P450 reductase from the house fly (Musca domestica). Insect Biochemistry and Molecular Biology 29:233-242.
23. Marat, B. M and R. Feyereisen. 1999. Mechanism of cytochrome P450 reductase from the house fly: evidence for an FMN semiquinone as electron donor. FEBS Letters 453(201-204).
24. Serizawa, N and T. Matsuoka. 1991. A two component-type cytochrome P-450 monooxygenase system in a prokaryote that catalyzes hydroxylation of ML-236B to pravastatin, a tissue -selective inhibitor of 3-hydroxyl-3-methylglutaryl coenzyme A reductase. Biochem. Biophys. Acta. 1084:35-40.
25. Ming, W., D. L. Roberts, R. Paschke, T. M. Shea, B. S. S. Masters and Jung-Ja P. Kim. 1997. Three-dimensional structure of NADPH-cytochrome P450 reductase: Prototype for FMN- and FAD-containing enzymes. Proc. Natl. Acad.Sci 94:8411-8416.
26. Natalie L. F., L. R. Xiaoan, S. Stassi, K. Leonard and C.R. Hutchinson. 1997. Gene disruption and replacement in the rapamycin-producing Streptomyces hygroscopicus strain ATCC 29253. Microbiology 143:875-883.
27. O''Keefe, D. P., and P. A. Harder. 1991. Occurrence and biological function of cytochrome P450 monooxygenases in the actinomycetes. Mol Microbiol 5(9):2099-105.
28. Olaf Dohr, M. J., I. P. Thomas, F. Gordon, C. K. Roberts and R. Wolf. 2001. Engineering of a functional human NADH-dependent cytochrome P450 system. PNAS 98:81-86.
29. Sariaslani. F. S and C. A. Omer.1992. Actinomycete cytochrome P-450 involved in oxidative metabolism: Biochemistry and molecular biology. Crit. Rev. Plant. Sci 11:1-16.
30. Paitan, Y. E., Orr, E.Z. Ron and E. Rosenberg. 1999. Cloning and characterization of a Myxococuus cytochrome P-450 hydroxylase required for biosynthesis of the polyketide antibiotic TA. Gene 228:147-153.
31. Peng, Y., E. A. Walker, J. C. Davis and A. L. Demain. 1999. A chemically defined medium supporting growth and providing cells converting compactin to pravastatin. J. Industrial Microbiol. & Biotechnol. 22:78-79.
32. Brenda, W. G and J. A. Peterson. 1972. Camphor and Thermodynamics of the Reaction. Biochemistry 11(25):4740-4746.
33. Serizawa N and H. M. a. H. 1997. Biotechnology of Antibiotics. Marcel Dekker, New York.
34. Stehr, M., G. Schneider, F. Aslund, A. Holmgren and Y. Lindqvist. 2001. Structural basis for the thioredoxin-like activity profile of the glutaredoxin-like NrdH-redoxin from Escherichia coli. J Biol Chem 276(38):35836-41.
35. Taylor, M., D. C. Lamb, R. Cannell, M. Dawson and S. L. Kelly. 1999. Cytochrome P450105D1 (CYP105D1) from Streptomyces griseus: heterologous expression, activity, and activation effects of multiple xenobiotics. Biochem Biophys Res Commun 263(3):838-42.
36. Unger B.P., I. C. G and S. G. Sliger. 1986. Nucleotide sequence of the Pseudomonas putida cytochrome P450cam gene and its expression in Escheriachia coli. J. Biol. Chem. 261:1158-1163.
37. Dietschy. J. M and J. D. Wilso.1970. Regulation of cholesterol metabolism. N. Engi. J. Med. 282:1179-1183.
38. Yashphe J., J. Davis, Y. Peng and A. L. Demain. 1997. New microorganisms which convert compactin to pravastatin. Actinomycetologica II:20-25.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top